在当前数字化时代,互联网数据中心(internet data center,IDC)(以下简称“数据中心”)作为大型的电力消耗者已经成为电力网络中的重要组成部分。首先采用数据中心余热回收技术建立了数据中心等值热参数模型,并将其融入到微能源网中以实...在当前数字化时代,互联网数据中心(internet data center,IDC)(以下简称“数据中心”)作为大型的电力消耗者已经成为电力网络中的重要组成部分。首先采用数据中心余热回收技术建立了数据中心等值热参数模型,并将其融入到微能源网中以实现冷热电多能互补。其次对数据中心运行过程中所需制冷量与余热之间的复杂关系进行了深入分析,采用溴化锂吸收式制冷机和电制冷机来满足数据中心的冷负荷需求。为了更有效地应对批处理负荷在时间维度上的变化特性,制定了高度灵活的数据负荷分配策略,并建立了双层规划模型。使用场景削减的典型日选择方法以应对源荷不确定性,并引入基于Tent映射的灰狼优化算法(Tent mapping grey wolf optimization algorithm,TMGWO)和CPLEX进行联合求解。最后,通过对某含数据中心的微能源网系统进行仿真分析,数值计算结果表明所提出的方法能够有效提高系统的经济性和环保性。展开更多
物联网作为国内外新兴的热门技术,正在深刻地影响着人们的生产生活,它在带来诸多好处的同时也给信息存储领域带来挑战.物联网信息存储中心需要根据其数据特性结合分布式实时数据库信息存储管理的优点,设计与之相适应的数据存储方案,而...物联网作为国内外新兴的热门技术,正在深刻地影响着人们的生产生活,它在带来诸多好处的同时也给信息存储领域带来挑战.物联网信息存储中心需要根据其数据特性结合分布式实时数据库信息存储管理的优点,设计与之相适应的数据存储方案,而数据分配策略作为数据存储方案的关键技术是研究的重点.根据物联网传感器信息的海量性、时空相关性、访问失衡性和连续变化性,需要一种基于时域的数据分配模型与之相适应,以此设计出基于自适应时域负载反馈的动态数据分配策略(adaptive time domain data allocation,ATDA).策略根据数据特征,将静态数据分配问题归约成简单线性规划问题,同时采用自适应时域对负载信息进行反馈,最后设置动态负载门限函数实现数据的动态分配.实验表明,该策略与同类Random、Bubba算法相比,在系统短时域负载均衡(LBST)、系统数据迁移量(DM)方面具有更好的性能.展开更多
文摘在当前数字化时代,互联网数据中心(internet data center,IDC)(以下简称“数据中心”)作为大型的电力消耗者已经成为电力网络中的重要组成部分。首先采用数据中心余热回收技术建立了数据中心等值热参数模型,并将其融入到微能源网中以实现冷热电多能互补。其次对数据中心运行过程中所需制冷量与余热之间的复杂关系进行了深入分析,采用溴化锂吸收式制冷机和电制冷机来满足数据中心的冷负荷需求。为了更有效地应对批处理负荷在时间维度上的变化特性,制定了高度灵活的数据负荷分配策略,并建立了双层规划模型。使用场景削减的典型日选择方法以应对源荷不确定性,并引入基于Tent映射的灰狼优化算法(Tent mapping grey wolf optimization algorithm,TMGWO)和CPLEX进行联合求解。最后,通过对某含数据中心的微能源网系统进行仿真分析,数值计算结果表明所提出的方法能够有效提高系统的经济性和环保性。
文摘物联网作为国内外新兴的热门技术,正在深刻地影响着人们的生产生活,它在带来诸多好处的同时也给信息存储领域带来挑战.物联网信息存储中心需要根据其数据特性结合分布式实时数据库信息存储管理的优点,设计与之相适应的数据存储方案,而数据分配策略作为数据存储方案的关键技术是研究的重点.根据物联网传感器信息的海量性、时空相关性、访问失衡性和连续变化性,需要一种基于时域的数据分配模型与之相适应,以此设计出基于自适应时域负载反馈的动态数据分配策略(adaptive time domain data allocation,ATDA).策略根据数据特征,将静态数据分配问题归约成简单线性规划问题,同时采用自适应时域对负载信息进行反馈,最后设置动态负载门限函数实现数据的动态分配.实验表明,该策略与同类Random、Bubba算法相比,在系统短时域负载均衡(LBST)、系统数据迁移量(DM)方面具有更好的性能.