Despite that existing data sharing systems in online social networks (OSNs) propose to encrypt data before sharing, the multiparty access control of encrypted data has become a challenging issue. In this paper, we p...Despite that existing data sharing systems in online social networks (OSNs) propose to encrypt data before sharing, the multiparty access control of encrypted data has become a challenging issue. In this paper, we propose a secure data sharing scheme in 0SNs based on ciphertext-policy attribute- based proxy re-encryption and secret sharing. In order to protect users' sensitive data, our scheme allows users to customize access policies of their data and then outsource encrypted data to the OSNs service provider. Our scheme presents a multiparty access control model, which enables the disseminator to update the access policy of ciphertext if their attributes satisfy the existing access policy. Further, we present a partial decryption construction in which the computation overhead of user is largely reduced by delegating most of the decryption operations to the OSNs service provider. We also provide checkability on the results returned from the OSNs service provider to guarantee the correctness of partial decrypted ciphertext. Moreover, our scheme presents an efficient attribute revocation method that achieves both forward and backward secrecy. The security and performance analysis results indicate that the proposed scheme is secure and efficient in OSNs.展开更多
In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity,...In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity, and more solutions are required to minimize the gap. Traffic allocation among multiple networks is regarded as one of the most effective methods to solve the problem. However, current studies are unable to derive the quantity of traffic that each network should carry. An intelligent traffic allocation algorithm for multiple networks is proposed to obtain the optimal traffic distribution. Multiple factors affecting traffic distribution are considered in the proposed algorithm, such as network coverage, network cost, user habit, service types, network capacity and terminals. Using evaluations, we proved that the proposed algorithm enables a lower network cost than load balancing schemes. A case study of strategy rmldng for a 2G system refarming is presented to further illustrate the applicability of the proposed algorithm. We demonstrated that the new algorithm could be applied in strategy rmldng for telecommunication operators.展开更多
基金This work has been supported by the National Natural Science Foundation of China under Grant No.61272519,the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20120005110017,and the National Key Technology R&D Program under Grant No.2012BAH06B02
文摘Despite that existing data sharing systems in online social networks (OSNs) propose to encrypt data before sharing, the multiparty access control of encrypted data has become a challenging issue. In this paper, we propose a secure data sharing scheme in 0SNs based on ciphertext-policy attribute- based proxy re-encryption and secret sharing. In order to protect users' sensitive data, our scheme allows users to customize access policies of their data and then outsource encrypted data to the OSNs service provider. Our scheme presents a multiparty access control model, which enables the disseminator to update the access policy of ciphertext if their attributes satisfy the existing access policy. Further, we present a partial decryption construction in which the computation overhead of user is largely reduced by delegating most of the decryption operations to the OSNs service provider. We also provide checkability on the results returned from the OSNs service provider to guarantee the correctness of partial decrypted ciphertext. Moreover, our scheme presents an efficient attribute revocation method that achieves both forward and backward secrecy. The security and performance analysis results indicate that the proposed scheme is secure and efficient in OSNs.
基金supported partially by the National Science and Technology Major Projects under Grants No. 2012ZX03006003-005,No. 2012ZX03003006-002,and No. 2010ZX03002-008-01
文摘In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity, and more solutions are required to minimize the gap. Traffic allocation among multiple networks is regarded as one of the most effective methods to solve the problem. However, current studies are unable to derive the quantity of traffic that each network should carry. An intelligent traffic allocation algorithm for multiple networks is proposed to obtain the optimal traffic distribution. Multiple factors affecting traffic distribution are considered in the proposed algorithm, such as network coverage, network cost, user habit, service types, network capacity and terminals. Using evaluations, we proved that the proposed algorithm enables a lower network cost than load balancing schemes. A case study of strategy rmldng for a 2G system refarming is presented to further illustrate the applicability of the proposed algorithm. We demonstrated that the new algorithm could be applied in strategy rmldng for telecommunication operators.