期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进Unet++在脑肿瘤图像分割的研究
被引量:
11
1
作者
侯奕辰
彭辉
+1 位作者
谢俊章
曾庆喜
《计算机工程与设计》
北大核心
2022年第6期1725-1731,共7页
针对计算机辅助脑肿瘤图像分割精度不高,提出改进的密集连接网络Unet++脑肿瘤自动分割网络。分别将残差块和数据相关型上采样Dupsampling融入网络的编码、解码部分,提高特征提取的能力并防止梯度消失;使用Mish激活函数代替Relu激活函数...
针对计算机辅助脑肿瘤图像分割精度不高,提出改进的密集连接网络Unet++脑肿瘤自动分割网络。分别将残差块和数据相关型上采样Dupsampling融入网络的编码、解码部分,提高特征提取的能力并防止梯度消失;使用Mish激活函数代替Relu激活函数,更平滑的曲线有助于提升网络的非线性特征提取能力和泛化性;使用交叉熵和Dice结合的损失函数,进一步提升分割精度。该方法在BraTs2019部分数据上验证,在全肿瘤、核心肿瘤和增强肿瘤分割结果的Dice系数分别达到0.9236、0.8745、0.8404,豪斯多夫距离为1.806、2.994、1.865,优于大多数脑肿瘤分割模型。
展开更多
关键词
脑肿瘤分割
密集连接网络Unet++
残差块
数据相关型上采样dupsampling
Mish激活函数
在线阅读
下载PDF
职称材料
题名
改进Unet++在脑肿瘤图像分割的研究
被引量:
11
1
作者
侯奕辰
彭辉
谢俊章
曾庆喜
机构
成都信息工程大学软件工程学院
出处
《计算机工程与设计》
北大核心
2022年第6期1725-1731,共7页
基金
四川省科技计划基金项目(2019YJ0356)。
文摘
针对计算机辅助脑肿瘤图像分割精度不高,提出改进的密集连接网络Unet++脑肿瘤自动分割网络。分别将残差块和数据相关型上采样Dupsampling融入网络的编码、解码部分,提高特征提取的能力并防止梯度消失;使用Mish激活函数代替Relu激活函数,更平滑的曲线有助于提升网络的非线性特征提取能力和泛化性;使用交叉熵和Dice结合的损失函数,进一步提升分割精度。该方法在BraTs2019部分数据上验证,在全肿瘤、核心肿瘤和增强肿瘤分割结果的Dice系数分别达到0.9236、0.8745、0.8404,豪斯多夫距离为1.806、2.994、1.865,优于大多数脑肿瘤分割模型。
关键词
脑肿瘤分割
密集连接网络Unet++
残差块
数据相关型上采样dupsampling
Mish激活函数
Keywords
brain tumor segmentation
dense connection network Unet++
residual block
data correlation upsampling structure
dupsampling
Mish activation function
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进Unet++在脑肿瘤图像分割的研究
侯奕辰
彭辉
谢俊章
曾庆喜
《计算机工程与设计》
北大核心
2022
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部