期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于1D-Concatenate的信道估计DNN模型优化方法
被引量:
2
1
作者
卢敏
秦泽豪
+2 位作者
陈志辉
张敏
乐光学
《电信科学》
2023年第4期71-86,共16页
为提高DNN模型在无线通信中信道估计精度,提出一种基于1D-Concatenate的信道估计DNN模型优化方法。该方法将Concatenate进行一维(1D)数据转换,以跳跃连接的方式引入DNN模型,抑制梯度消失问题,运用1D-Concatenate恢复网络训练过程中丢失...
为提高DNN模型在无线通信中信道估计精度,提出一种基于1D-Concatenate的信道估计DNN模型优化方法。该方法将Concatenate进行一维(1D)数据转换,以跳跃连接的方式引入DNN模型,抑制梯度消失问题,运用1D-Concatenate恢复网络训练过程中丢失的数据特征,提高DNN信道估计精度。为验证优化方法的有效性,选取较典型的基于DNN的无线通信信道估计模型进行对比仿真实验。实验结果表明,本文提出的优化方法对已有DNN模型的估计增益提升可达77.10%,在高信噪比下信道增益提升可达3 dB。该优化方法能有效提高DNN模型在无线通信中的信道估计精度,特别是高信噪比下提升效果显著。
展开更多
关键词
信道估计
深度神经网络
Concatenate维度转换
数据特征恢复
在线阅读
下载PDF
职称材料
题名
基于1D-Concatenate的信道估计DNN模型优化方法
被引量:
2
1
作者
卢敏
秦泽豪
陈志辉
张敏
乐光学
机构
江西理工大学理学院
嘉兴学院信息科学与工程学院
浙江省医学电子与数字健康重点实验室
出处
《电信科学》
2023年第4期71-86,共16页
基金
国家自然科学基金重点项目(No.U19B2015)。
文摘
为提高DNN模型在无线通信中信道估计精度,提出一种基于1D-Concatenate的信道估计DNN模型优化方法。该方法将Concatenate进行一维(1D)数据转换,以跳跃连接的方式引入DNN模型,抑制梯度消失问题,运用1D-Concatenate恢复网络训练过程中丢失的数据特征,提高DNN信道估计精度。为验证优化方法的有效性,选取较典型的基于DNN的无线通信信道估计模型进行对比仿真实验。实验结果表明,本文提出的优化方法对已有DNN模型的估计增益提升可达77.10%,在高信噪比下信道增益提升可达3 dB。该优化方法能有效提高DNN模型在无线通信中的信道估计精度,特别是高信噪比下提升效果显著。
关键词
信道估计
深度神经网络
Concatenate维度转换
数据特征恢复
Keywords
channel estimation
deep neural network
Concatenate dimension conversion
data feature recovery
分类号
TN393 [电子电信—物理电子学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于1D-Concatenate的信道估计DNN模型优化方法
卢敏
秦泽豪
陈志辉
张敏
乐光学
《电信科学》
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部