期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向YOLO神经网络的数据流架构优化研究
被引量:
2
1
作者
穆宇栋
李文明
+5 位作者
范志华
吴萌
吴海彬
安学军
叶笑春
范东睿
《计算机学报》
北大核心
2025年第1期82-99,共18页
YOLO目标检测算法具有速度快、精度高、结构简单、性能稳定等优点,因此在多种对实时性要求较高的场景中得到广泛应用。传统的控制流架构在执行YOLO神经网络时面临计算部件利用率低、功耗高、能效较低等挑战。相较而言,数据流架构的执行...
YOLO目标检测算法具有速度快、精度高、结构简单、性能稳定等优点,因此在多种对实时性要求较高的场景中得到广泛应用。传统的控制流架构在执行YOLO神经网络时面临计算部件利用率低、功耗高、能效较低等挑战。相较而言,数据流架构的执行模式与神经网络算法匹配度高,更能充分挖掘其中的数据并行性。然而,在数据流架构上部署YOLO神经网络时面临三个问题:(1)数据流架构的数据流图映射并不能结合YOLO神经网络中卷积层卷积核较小的特点,造成卷积运算数据复用率过低的问题,并进一步降低计算部件利用率;(2)数据流架构在算子调度时无法利用算子间结构高度耦合的特点,导致大量数据重复读取;(3)数据流架构上的数据存取与执行高度耦合、串序执行,导致数据存取延迟过高。为解决这些问题,本文设计了面向YOLO神经网络的数据流加速器DFU-Y。首先,结合卷积嵌套循环的执行模式,本文分析了小卷积核卷积运算的数据复用特征,并提出了更有利于执行单元内部数据复用的数据流图映射算法,从而整体提升卷积运行效率;然后,为充分利用结构耦合的算子间的数据复用,DFU-Y提出数据流图层次上的算子融合调度机制以减少数据存取次数、提升神经网络运行效率;最后,DFU-Y通过双缓存解耦合数据存取与执行,从而并行执行数据存取与运算,掩盖了程序间的数据传输延迟,提高了计算部件利用率。实验表明,相较数据流架构(DFU)和GPU(NVIDIA Xavier NX),DFU-Y分别获得2.527倍、1.334倍的性能提升和2.658倍、3.464倍的能效提升;同时,相较YOLO专用加速器(Arria-YOLO),DFU-Y在保持较好通用性的同时,达到了其性能的72.97%、能效的87.41%。
展开更多
关键词
YOLO算法
数据流
架构
数据流图优化
卷积神经网络
神经网络加速
在线阅读
下载PDF
职称材料
题名
面向YOLO神经网络的数据流架构优化研究
被引量:
2
1
作者
穆宇栋
李文明
范志华
吴萌
吴海彬
安学军
叶笑春
范东睿
机构
处理器芯片全国重点实验室(中国科学院计算技术研究所)
中国科学院大学计算机科学与技术学院
出处
《计算机学报》
北大核心
2025年第1期82-99,共18页
基金
北京市科技新星计划资助(20220484054,20230484420)
北京市自然科学基金-昌平创新联合基金资助项目(L234078)
中国科学院青年创新促进会资助。
文摘
YOLO目标检测算法具有速度快、精度高、结构简单、性能稳定等优点,因此在多种对实时性要求较高的场景中得到广泛应用。传统的控制流架构在执行YOLO神经网络时面临计算部件利用率低、功耗高、能效较低等挑战。相较而言,数据流架构的执行模式与神经网络算法匹配度高,更能充分挖掘其中的数据并行性。然而,在数据流架构上部署YOLO神经网络时面临三个问题:(1)数据流架构的数据流图映射并不能结合YOLO神经网络中卷积层卷积核较小的特点,造成卷积运算数据复用率过低的问题,并进一步降低计算部件利用率;(2)数据流架构在算子调度时无法利用算子间结构高度耦合的特点,导致大量数据重复读取;(3)数据流架构上的数据存取与执行高度耦合、串序执行,导致数据存取延迟过高。为解决这些问题,本文设计了面向YOLO神经网络的数据流加速器DFU-Y。首先,结合卷积嵌套循环的执行模式,本文分析了小卷积核卷积运算的数据复用特征,并提出了更有利于执行单元内部数据复用的数据流图映射算法,从而整体提升卷积运行效率;然后,为充分利用结构耦合的算子间的数据复用,DFU-Y提出数据流图层次上的算子融合调度机制以减少数据存取次数、提升神经网络运行效率;最后,DFU-Y通过双缓存解耦合数据存取与执行,从而并行执行数据存取与运算,掩盖了程序间的数据传输延迟,提高了计算部件利用率。实验表明,相较数据流架构(DFU)和GPU(NVIDIA Xavier NX),DFU-Y分别获得2.527倍、1.334倍的性能提升和2.658倍、3.464倍的能效提升;同时,相较YOLO专用加速器(Arria-YOLO),DFU-Y在保持较好通用性的同时,达到了其性能的72.97%、能效的87.41%。
关键词
YOLO算法
数据流
架构
数据流图优化
卷积神经网络
神经网络加速
Keywords
YOLO algorithm
dataflow architecture
optimization of data flow graph
convolutional neural network
neural network acceleration
分类号
TP301 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
面向YOLO神经网络的数据流架构优化研究
穆宇栋
李文明
范志华
吴萌
吴海彬
安学军
叶笑春
范东睿
《计算机学报》
北大核心
2025
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部