In order to construct the data mining frame for the generic project risk research, the basic definitions of the generic project risk element were given, and then a new model of the generic project risk element was pre...In order to construct the data mining frame for the generic project risk research, the basic definitions of the generic project risk element were given, and then a new model of the generic project risk element was presented with the definitions. From the model, data mining method was used to acquire the risk transmission matrix from the historical databases analysis. The quantitative calculation problem among the generic project risk elements was solved. This method deals with well the risk element transmission problems with limited states. And in order to get the limited states, fuzzy theory was used to discrete the historical data in historical databases. In an example, the controlling risk degree is chosen as P(Rs≥2) ≤0.1, it means that the probability of risk state which is not less than 2 in project is not more than 0.1, the risk element R3 is chosen to control the project, respectively. The result shows that three risk element transmission matrix can be acquired in 4 risk elements, and the frequency histogram and cumulative frequency histogram of each risk element are also given.展开更多
Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in ...Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in enterprises, the product lifecycle data have been effectively managed. However, these data have not been fully utilized in module division, especially for complex machinery products. To solve this problem, a product module mining method for the PLM database is proposed to improve the effect of module division. Firstly, product data are extracted from the PLM database by data extraction algorithm. Then, data normalization and structure logical inspection are used to preprocess the extracted defective data. The preprocessed product data are analyzed and expressed in a matrix for module mining. Finally, the fuzzy c-means clustering(FCM) algorithm is used to generate product modules, which are stored in product module library after module marking and post-processing. The feasibility and effectiveness of the proposed method are verified by a case study of high pressure valve.展开更多
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘In order to construct the data mining frame for the generic project risk research, the basic definitions of the generic project risk element were given, and then a new model of the generic project risk element was presented with the definitions. From the model, data mining method was used to acquire the risk transmission matrix from the historical databases analysis. The quantitative calculation problem among the generic project risk elements was solved. This method deals with well the risk element transmission problems with limited states. And in order to get the limited states, fuzzy theory was used to discrete the historical data in historical databases. In an example, the controlling risk degree is chosen as P(Rs≥2) ≤0.1, it means that the probability of risk state which is not less than 2 in project is not more than 0.1, the risk element R3 is chosen to control the project, respectively. The result shows that three risk element transmission matrix can be acquired in 4 risk elements, and the frequency histogram and cumulative frequency histogram of each risk element are also given.
基金Project(51275362)supported by the National Natural Science Foundation of ChinaProject(2013M542055)supported by China Postdoctoral Science Foundation Funded
文摘Modular technology can effectively support the rapid design of products, and it is one of the key technologies to realize mass customization design. With the application of product lifecycle management(PLM) system in enterprises, the product lifecycle data have been effectively managed. However, these data have not been fully utilized in module division, especially for complex machinery products. To solve this problem, a product module mining method for the PLM database is proposed to improve the effect of module division. Firstly, product data are extracted from the PLM database by data extraction algorithm. Then, data normalization and structure logical inspection are used to preprocess the extracted defective data. The preprocessed product data are analyzed and expressed in a matrix for module mining. Finally, the fuzzy c-means clustering(FCM) algorithm is used to generate product modules, which are stored in product module library after module marking and post-processing. The feasibility and effectiveness of the proposed method are verified by a case study of high pressure valve.