The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in...The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in the Cloud.In this paper,we present an alternative approach which divides big data into sequenced parts and stores them among multiple Cloud storage service providers.Instead of protecting the big data itself,the proposed scheme protects the mapping of the various data elements to each provider using a trapdoor function.Analysis,comparison and simulation prove that the proposed scheme is efficient and secure for the big data of Cloud tenants.展开更多
Public key encryption scheme with keyword search (PEKS) enables us to search the encrypted data in a cloud server with a keyword, and no one can obtain any infor- mation about the encrypted data without the trapdoor...Public key encryption scheme with keyword search (PEKS) enables us to search the encrypted data in a cloud server with a keyword, and no one can obtain any infor- mation about the encrypted data without the trapdoor corresponding to the keyword. The PEKS is useful to keep the management of large data storages secure such as those in a cloud. In this paper, to protect against quantum computer attacks, we present a lattice-based identity-based encryption scheme with key- word search. We have proved that our scheme can achieve ciphertext indistinguishability in the random oracle model, and our scheme can also achieve trapdoor security. In particular, our scheme can designate a unique tester to test and return the search results, therefore it does not need a secure channel. To the best of our knowledge, our scheme is the first iden- tity-based encryption scheme with keyword search from lattice assumption.展开更多
基金supported in part by the National Nature Science Foundation of China under Grant No.61402413 and 61340058 the "Six Kinds Peak Talents Plan" project of Jiangsu Province under Grant No.ll-JY-009+2 种基金the Nature Science Foundation of Zhejiang Province under Grant No.LY14F020019, Z14F020006 and Y1101183the China Postdoctoral Science Foundation funded project under Grant No.2012M511732Jiangsu Province Postdoctoral Science Foundation funded project Grant No.1102014C
文摘The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in the Cloud.In this paper,we present an alternative approach which divides big data into sequenced parts and stores them among multiple Cloud storage service providers.Instead of protecting the big data itself,the proposed scheme protects the mapping of the various data elements to each provider using a trapdoor function.Analysis,comparison and simulation prove that the proposed scheme is efficient and secure for the big data of Cloud tenants.
基金supported by the National Natural Science Foundation of China (No.61370203)China Postdoctoral Science Foundation Funded Project (No.2017M623008)+1 种基金Scientific Research Starting Project of SWPU (No.2017QHZ023)State Scholarship Foundation of China Scholarship Council (No.201708515149)
文摘Public key encryption scheme with keyword search (PEKS) enables us to search the encrypted data in a cloud server with a keyword, and no one can obtain any infor- mation about the encrypted data without the trapdoor corresponding to the keyword. The PEKS is useful to keep the management of large data storages secure such as those in a cloud. In this paper, to protect against quantum computer attacks, we present a lattice-based identity-based encryption scheme with key- word search. We have proved that our scheme can achieve ciphertext indistinguishability in the random oracle model, and our scheme can also achieve trapdoor security. In particular, our scheme can designate a unique tester to test and return the search results, therefore it does not need a secure channel. To the best of our knowledge, our scheme is the first iden- tity-based encryption scheme with keyword search from lattice assumption.