期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
艺术史学实证型方法的回顾与新探 被引量:4
1
作者 王一川 《北京师范大学学报(社会科学版)》 CSSCI 北大核心 2023年第3期107-118,共12页
艺术史学实证型方法是运用可靠的艺术史证据去寻求实证效果的研究方法,包括史料学、文献学、考古学和数据学等,在艺术史学研究方法中具有基础性地位。艺术史史料学方法是依据艺术史史料而进行艺术史研究的手段,艺术史文献学方法运用相... 艺术史学实证型方法是运用可靠的艺术史证据去寻求实证效果的研究方法,包括史料学、文献学、考古学和数据学等,在艺术史学研究方法中具有基础性地位。艺术史史料学方法是依据艺术史史料而进行艺术史研究的手段,艺术史文献学方法运用相关文献知识去证明或支撑某种新认知,艺术史考古学方法意味着依据田野考古工作真实遗迹和遗物而研究其与艺术品的关联性,艺术史数据学方法是运用定量分析、电子计算机数据统计或大数据等去获取确切的数量依据并得出结论的研究手段;坚持“实证”和“实证精神”是艺术史学实证型研究方法的基本原则。通向未来的艺术史学实证型方法应当力求言之有据、言之有信、言之有通、言之有识和言而自反。 展开更多
关键词 艺术史 实证型方法 史料方法 文献方法 考古方法 数据学方法
在线阅读 下载PDF
PEMFCs degradation prediction based on ENSACO-LSTM
2
作者 JIA Zhi-huan CHEN Lin +2 位作者 SHAO Ao-li WANG Yu-peng GAO Jin-wu 《控制理论与应用》 2025年第8期1578-1586,共9页
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel... In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM. 展开更多
关键词 proton exchange membrane fuel cells swarm optimization algorithm performance aging prediction enhanced search ant colony algorithm data-driven approach deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部