期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于TLR-ADASYN平衡化数据集的MSSA-SVM变压器故障诊断
被引量:
54
1
作者
余松
胡东
+2 位作者
唐超
张丞鸣
谭为民
《高电压技术》
EI
CAS
CSCD
北大核心
2021年第11期3845-3853,共9页
变压器的稳定运行在电力系统安全中扮演重要角色,而变压器故障数据样本的不足会对故障类型的准确识别产生严重影响。论文首先使用了托梅克链接移除和自适应样本合成的方法对原始数据进行去噪处理及少数类数据样本合成;然后修正了部分麻...
变压器的稳定运行在电力系统安全中扮演重要角色,而变压器故障数据样本的不足会对故障类型的准确识别产生严重影响。论文首先使用了托梅克链接移除和自适应样本合成的方法对原始数据进行去噪处理及少数类数据样本合成;然后修正了部分麻雀算法(sparrow search algorithm,SSA)公式,并将其与差分进化算法融合,提出了改良麻雀算法(modified sparrow search algorithm,MSSA);接着构建了一种基于平衡数据集的改良麻雀算法优化支持向量机(modified sparrow search algorithm-support vector machine,MSSA-SVM)的变压器故障诊断模型;最后对BP神经网络(BP neural network,BPNN)、粒子群优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)、麻雀算法优化支持向量机(sparrow search algorithm-support vector machine,SSA-SVM)和MSSA-SVM进行对比仿真实验。结果显示,各类模型在使用平衡数据集后的平均准确率分别提升了3.12%、6.03%、7.58%、10.23%,验证了所提不平衡数据处理方法的有效性;另外,PSO-SVM、SSA-SVM、MSSA-SVM分别迭代了30次、26次和20次后收敛,其在测试集中Kappa系数分别为0.758、0.785和0.870,这表明了MSSA在该模型优化上具有更强的全局搜索能力。仿真结果说明在变压器数据不平衡的实际背景下,所提变压故障诊断方法具有较高的优越性。
展开更多
关键词
电力变压器
故障诊断
不平衡
类
样本
数据
处理
MSSA-SVM
Kappa系数
在线阅读
下载PDF
职称材料
半监督技术和主动学习相结合的网络入侵检测方法
被引量:
17
2
作者
曾宏志
史洪松
《吉林大学学报(理学版)》
CAS
北大核心
2021年第4期936-942,共7页
针对当前网络入侵具有多样性和易变性,单一方法很难获得理想网络入侵检测结果的问题,为提高网络入侵检测正确率,有效拦截各种网络入侵,提出一种将半监督技术与主动学习相结合的网络入侵检测方法.首先,采集网络入侵数据,提取网络入侵特征...
针对当前网络入侵具有多样性和易变性,单一方法很难获得理想网络入侵检测结果的问题,为提高网络入侵检测正确率,有效拦截各种网络入侵,提出一种将半监督技术与主动学习相结合的网络入侵检测方法.首先,采集网络入侵数据,提取网络入侵特征,并采用半监督技术根据特征对网络入侵数据进行聚类处理;其次,采用主动学习算法对聚类后的数据进行训练,构建网络入侵检测的分类器,并引入蚁群算法对构建网络入侵检测的分类器进行优化;最后,采用标准数据集对网络入侵检测方法进行仿真测试.测试结果表明,该方法解决了当前入侵检测方法存在的缺陷,提升了网络入侵检测正确率,漏检率和误检率明显少于经典网络入侵检测方法,同时缩短了网络入侵检测时间,改善了网络入侵检测效率,能更好地保证网络通信和数据传输安全.
展开更多
关键词
网络入侵
半监督技术
主动学习算法
数据
聚
类
处理
分
类
器参数优化
在线阅读
下载PDF
职称材料
题名
基于TLR-ADASYN平衡化数据集的MSSA-SVM变压器故障诊断
被引量:
54
1
作者
余松
胡东
唐超
张丞鸣
谭为民
机构
西南大学工程技术学院
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2021年第11期3845-3853,共9页
基金
国家自然科学基金(51977179)。
文摘
变压器的稳定运行在电力系统安全中扮演重要角色,而变压器故障数据样本的不足会对故障类型的准确识别产生严重影响。论文首先使用了托梅克链接移除和自适应样本合成的方法对原始数据进行去噪处理及少数类数据样本合成;然后修正了部分麻雀算法(sparrow search algorithm,SSA)公式,并将其与差分进化算法融合,提出了改良麻雀算法(modified sparrow search algorithm,MSSA);接着构建了一种基于平衡数据集的改良麻雀算法优化支持向量机(modified sparrow search algorithm-support vector machine,MSSA-SVM)的变压器故障诊断模型;最后对BP神经网络(BP neural network,BPNN)、粒子群优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)、麻雀算法优化支持向量机(sparrow search algorithm-support vector machine,SSA-SVM)和MSSA-SVM进行对比仿真实验。结果显示,各类模型在使用平衡数据集后的平均准确率分别提升了3.12%、6.03%、7.58%、10.23%,验证了所提不平衡数据处理方法的有效性;另外,PSO-SVM、SSA-SVM、MSSA-SVM分别迭代了30次、26次和20次后收敛,其在测试集中Kappa系数分别为0.758、0.785和0.870,这表明了MSSA在该模型优化上具有更强的全局搜索能力。仿真结果说明在变压器数据不平衡的实际背景下,所提变压故障诊断方法具有较高的优越性。
关键词
电力变压器
故障诊断
不平衡
类
样本
数据
处理
MSSA-SVM
Kappa系数
Keywords
power transformer
fault diagnosis
unbalanced sample data processing
MSSA-SVM
Kappa coefficient
分类号
TM41 [电气工程—电器]
在线阅读
下载PDF
职称材料
题名
半监督技术和主动学习相结合的网络入侵检测方法
被引量:
17
2
作者
曾宏志
史洪松
机构
江西工程学院智能制造工程学院
出处
《吉林大学学报(理学版)》
CAS
北大核心
2021年第4期936-942,共7页
基金
江西省教育厅科学技术研究项目(批准号:191194).
文摘
针对当前网络入侵具有多样性和易变性,单一方法很难获得理想网络入侵检测结果的问题,为提高网络入侵检测正确率,有效拦截各种网络入侵,提出一种将半监督技术与主动学习相结合的网络入侵检测方法.首先,采集网络入侵数据,提取网络入侵特征,并采用半监督技术根据特征对网络入侵数据进行聚类处理;其次,采用主动学习算法对聚类后的数据进行训练,构建网络入侵检测的分类器,并引入蚁群算法对构建网络入侵检测的分类器进行优化;最后,采用标准数据集对网络入侵检测方法进行仿真测试.测试结果表明,该方法解决了当前入侵检测方法存在的缺陷,提升了网络入侵检测正确率,漏检率和误检率明显少于经典网络入侵检测方法,同时缩短了网络入侵检测时间,改善了网络入侵检测效率,能更好地保证网络通信和数据传输安全.
关键词
网络入侵
半监督技术
主动学习算法
数据
聚
类
处理
分
类
器参数优化
Keywords
network intrusion
semi-supervised technology
active learning algorithm
data clustering
classifier parameter optimization
分类号
TP393 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于TLR-ADASYN平衡化数据集的MSSA-SVM变压器故障诊断
余松
胡东
唐超
张丞鸣
谭为民
《高电压技术》
EI
CAS
CSCD
北大核心
2021
54
在线阅读
下载PDF
职称材料
2
半监督技术和主动学习相结合的网络入侵检测方法
曾宏志
史洪松
《吉林大学学报(理学版)》
CAS
北大核心
2021
17
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部