针对大数据环境下随机森林算法存在冗余与不相关特征过多、特征子空间信息含量不足以及并行化效率低等问题,提出了结合增益率与堆叠自编码器的并行随机森林算法PRFGRSAE(parallel random forest algorithm combining gain ratio and sta...针对大数据环境下随机森林算法存在冗余与不相关特征过多、特征子空间信息含量不足以及并行化效率低等问题,提出了结合增益率与堆叠自编码器的并行随机森林算法PRFGRSAE(parallel random forest algorithm combining gain ratio and stacked auto encoders)。首先,提出了结合非线性归一化增益率和堆叠自编码器的降维策略DRNGRSAE(dimension reduction combining nonlinear normalization gain ratio and stacked auto encoders),通过过滤特征集中的冗余和不相关特征,并利用堆叠自编码器提取特征,有效减少了冗余以及不相关特征数;其次,提出了结合拉丁超立方抽样与归一化相关度的子空间选择策略SSLF(subspace selection strategy combining Latin hypercube sampling and feature class correlation),通过对特征集进行多层划分抽样,形成空间表达度较高的特征子空间,有效保证了特征子空间的信息含量;最后,提出结合可变动作学习自动机的reducer分配策略DSVLA(distribution strategy based on variable-action learning automata),使每个数据簇均匀分配到reducer进行处理,有效提高了并行化效率。实验结果表明,PRFGRSAE算法的加速比与准确度较IMRF、KSMRF和GAPRF算法都有显著提升,因此该算法应用于大数据处理,特别对包含较多特征的数据集有更高的精准度和并行效率。展开更多
针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)...针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。展开更多
文摘针对大数据环境下随机森林算法存在冗余与不相关特征过多、特征子空间信息含量不足以及并行化效率低等问题,提出了结合增益率与堆叠自编码器的并行随机森林算法PRFGRSAE(parallel random forest algorithm combining gain ratio and stacked auto encoders)。首先,提出了结合非线性归一化增益率和堆叠自编码器的降维策略DRNGRSAE(dimension reduction combining nonlinear normalization gain ratio and stacked auto encoders),通过过滤特征集中的冗余和不相关特征,并利用堆叠自编码器提取特征,有效减少了冗余以及不相关特征数;其次,提出了结合拉丁超立方抽样与归一化相关度的子空间选择策略SSLF(subspace selection strategy combining Latin hypercube sampling and feature class correlation),通过对特征集进行多层划分抽样,形成空间表达度较高的特征子空间,有效保证了特征子空间的信息含量;最后,提出结合可变动作学习自动机的reducer分配策略DSVLA(distribution strategy based on variable-action learning automata),使每个数据簇均匀分配到reducer进行处理,有效提高了并行化效率。实验结果表明,PRFGRSAE算法的加速比与准确度较IMRF、KSMRF和GAPRF算法都有显著提升,因此该算法应用于大数据处理,特别对包含较多特征的数据集有更高的精准度和并行效率。
文摘针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。