针对连续群智感知中隐私要求提高、收集到的感知数据不可靠和用户参与感知任务积极性低等问题,提出了一种基于对称加密和双层真值发现的连续群智感知激励机制(Symmetric Encryption and Double Truth Discovery Based Incentive Mechani...针对连续群智感知中隐私要求提高、收集到的感知数据不可靠和用户参与感知任务积极性低等问题,提出了一种基于对称加密和双层真值发现的连续群智感知激励机制(Symmetric Encryption and Double Truth Discovery Based Incentive Mechanism,SDIM)。首先,使用对称加密算法对感知数据进行隐私保护,在隐私要求较高并且感知数据量较大时,可以降低计算开销,减少数据加密和奖励计算的时间。其次,基于双层真值发现模型提出了一种支持数据可靠性评估的激励机制,实现连续群智感知的实时奖励,并在参与者有恶意行为时提高奖励公平性。最后给出了SDIM的双重隐私性分析。仿真结果表明,SDIM可以根据数据可靠性有效地计算出真值和奖励,在数据加密和奖励分发的时间上明显优于对比模型,并在参与者有恶意行为时能够更加公平地计算奖励。展开更多
The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and lea...The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and least-squares estimation (LSE) while it was hard to build confidence intervals (CI). The concept of generalized confidence interval (GCI) was introduced to build CIs of parameters under multiply type-I censoring. Further, GCI based on LSE and GCI based on MLE were proposed. It is mathematically proved that the former is exact and the latter is approximate. Besides, a Monte Carlo simulation study and an illustrative example also Ran out that the GCI method based on LSE yields rather satisfactory results by comparison with the ones based on MLE. It should be clear that the GCI method is a sensible choice to evaluate reliability under multiply type-I censoring.展开更多
文摘针对连续群智感知中隐私要求提高、收集到的感知数据不可靠和用户参与感知任务积极性低等问题,提出了一种基于对称加密和双层真值发现的连续群智感知激励机制(Symmetric Encryption and Double Truth Discovery Based Incentive Mechanism,SDIM)。首先,使用对称加密算法对感知数据进行隐私保护,在隐私要求较高并且感知数据量较大时,可以降低计算开销,减少数据加密和奖励计算的时间。其次,基于双层真值发现模型提出了一种支持数据可靠性评估的激励机制,实现连续群智感知的实时奖励,并在参与者有恶意行为时提高奖励公平性。最后给出了SDIM的双重隐私性分析。仿真结果表明,SDIM可以根据数据可靠性有效地计算出真值和奖励,在数据加密和奖励分发的时间上明显优于对比模型,并在参与者有恶意行为时能够更加公平地计算奖励。
基金Project(71371182) supported by the National Natural Science Foundation of China
文摘The multiply type-I censoring represented that all units in life test were terminated at different times. For estimations of Weibull parameters, it was easy to compute the maximum likelihood estimation (MLE) and least-squares estimation (LSE) while it was hard to build confidence intervals (CI). The concept of generalized confidence interval (GCI) was introduced to build CIs of parameters under multiply type-I censoring. Further, GCI based on LSE and GCI based on MLE were proposed. It is mathematically proved that the former is exact and the latter is approximate. Besides, a Monte Carlo simulation study and an illustrative example also Ran out that the GCI method based on LSE yields rather satisfactory results by comparison with the ones based on MLE. It should be clear that the GCI method is a sensible choice to evaluate reliability under multiply type-I censoring.