期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
数据透明技术研究 被引量:1
1
作者 傅宏宇 徐萧萧 +2 位作者 王彦成 刘洪 蔡泽华 《信息安全研究》 CSCD 2023年第7期648-654,共7页
数据透明技术是负责任创新的基础保障,通过来源透明、生产透明、使用透明的技术方案以及包含评价机制、反馈机制、责任机制的管理保障体系,实现对数据技术可解释、可追溯、可问责,通过满足数据安全法律要求、保护用户和使用者权益、保... 数据透明技术是负责任创新的基础保障,通过来源透明、生产透明、使用透明的技术方案以及包含评价机制、反馈机制、责任机制的管理保障体系,实现对数据技术可解释、可追溯、可问责,通过满足数据安全法律要求、保护用户和使用者权益、保证数据技术应用符合管理规范、推动数据安全有序流通,服务我国在确保数据安全前提下充分发挥数据价值的目标要求. 展开更多
关键词 数据透明技术 数据可解释 数据可追溯 数据可问责 数据安全
在线阅读 下载PDF
A physics-informed machine learning solution for landslide susceptibility mapping based on three-dimensional slope stability evaluation
2
作者 WANG Yun-hao WANG Lu-qi +4 位作者 ZHANG Wen-gang LIU Song-lin SUN Wei-xin HONG Li ZHU Zheng-wei 《Journal of Central South University》 CSCD 2024年第11期3838-3853,共16页
Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection... Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance. 展开更多
关键词 machine learning physics-informed model negative samples selection INTERPRETABILITY landslide susceptibility mapping
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部