针对数据存储中心硬盘故障数据稀少造成的故障预测效果不佳的问题,面向自我检测分析与报告技术(self-monitoring analysis and reporting technology,SMART)数据信息的时序特征,提出一种通过数据增强解决不平衡问题的硬盘故障预测算法...针对数据存储中心硬盘故障数据稀少造成的故障预测效果不佳的问题,面向自我检测分析与报告技术(self-monitoring analysis and reporting technology,SMART)数据信息的时序特征,提出一种通过数据增强解决不平衡问题的硬盘故障预测算法。该算法利用长短期记忆网络改进传统的生成对抗网络,生成包含故障恶化趋势信息的序列段数据,解决了数据集不平衡问题。同时,为进一步提高预测性能,预测模型融合了时序注意力机制和特征注意力机制,挖掘不同SMART特征和时间步对硬盘故障恶化过程的敏感程度。此外,在特征选择阶段结合了多种典型特征选择算法来选取关键特征。在真实硬盘数据集上进行了实验验证,结果表明,所提算法的准确率、召回率和F 1值均有较大提升。展开更多
文摘针对滚动轴承实际运行中的故障数据远少于正常数据,从而影响故障诊断模型诊断率的问题,提出了一种数据不平衡情况下的基于改进生成对抗网络(generative adversarial networks,GAN)的滚动轴承故障诊断方法——基于梯度惩罚的Wasserstein生成对抗网络(Wassserstein generative adversarial networks based on gradient penalty,WGAN-GP)。首先,采用连续小波变换(continuewavelettransform,CWT)将振动信号集转化为二维图像数据集。然后,用Wasserstein距离替代GAN的Jensen-Shannon(JS)散度,再使用梯度惩罚策略在WGAN权值裁剪过程中优化模型,使生成器损失函数的权值在区间中取得均衡,实现故障数据的自动生成,扩充故障数据集。最后,设置了不平衡数据集和数据增强对比实验,结果表明,WGAN-GP在所设置的不同不平衡比例实验下的模型诊断率分别提高了2.29%、1%、2.85%,在数据增强对比实验中的诊断率也高于几何变换增强后的数据和原始数据。