Blasting is one of the most important operations in the mining projects that has effective role in the whole operation physically and economically. Unsuitable blasting pattern may lead to unwanted events such as poor ...Blasting is one of the most important operations in the mining projects that has effective role in the whole operation physically and economically. Unsuitable blasting pattern may lead to unwanted events such as poor fragmentation, back break and fly rock. Multi attribute decision making(MADM) can be useful method for selecting the most appropriate blasting pattern among previously performed patterns. In this work, initially, from various already performed patterns, efficient and inefficient patterns are determined using data envelopment analysis(DEA). In the second step, after weighting impressive attributes using experts' opinion, elimination Et choice translating reality(ELECTRE) was used for ranking the efficient patterns and recognizing the most appropriate pattern in the Sungun Copper Mine, Iran. According to the obtained results, blasting pattern with the hole diameter of 15.24 cm, burden of 3 m, spacing of 4 m and stemming of 3.2 m has selected as the best pattern and has selected for future operation.展开更多
Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel...Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel water inrush was proposed based on improved attribute mathematical theory.The trigonometric functions were adopted to optimize the attribute mathematical theory,avoiding the influence of mutation points and linear variation zones in traditional linear measurement functions on the accuracy of the model.Based on comprehensive analysis of various factors,five parameters were selected as the evaluation indicators for the model,including tunnel head pressure,permeability coefficient of surrounding rock,crushing degree of surrounding rock,relative angle of joint plane and tunnel section size,under the principle of dimension rationality,independence,directness and quantification.The indicator classifications were determined.The links among measured data were analyzed in detail,and the objective weight of each indicator was determined by using similar weight method.Thereby the tunnel water inrush risk assessment model is established and applied in four target segments of two different tunnels in engineering.The evaluation results and the actual excavation data agree well,which indicates that the model is of high credibility and feasibility.展开更多
文摘Blasting is one of the most important operations in the mining projects that has effective role in the whole operation physically and economically. Unsuitable blasting pattern may lead to unwanted events such as poor fragmentation, back break and fly rock. Multi attribute decision making(MADM) can be useful method for selecting the most appropriate blasting pattern among previously performed patterns. In this work, initially, from various already performed patterns, efficient and inefficient patterns are determined using data envelopment analysis(DEA). In the second step, after weighting impressive attributes using experts' opinion, elimination Et choice translating reality(ELECTRE) was used for ranking the efficient patterns and recognizing the most appropriate pattern in the Sungun Copper Mine, Iran. According to the obtained results, blasting pattern with the hole diameter of 15.24 cm, burden of 3 m, spacing of 4 m and stemming of 3.2 m has selected as the best pattern and has selected for future operation.
基金Project(2013CB036004) supported by National Basic Research Program(973)of ChinaProject(51378510) supported by National Natural Science Foundation of China
文摘Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel water inrush was proposed based on improved attribute mathematical theory.The trigonometric functions were adopted to optimize the attribute mathematical theory,avoiding the influence of mutation points and linear variation zones in traditional linear measurement functions on the accuracy of the model.Based on comprehensive analysis of various factors,five parameters were selected as the evaluation indicators for the model,including tunnel head pressure,permeability coefficient of surrounding rock,crushing degree of surrounding rock,relative angle of joint plane and tunnel section size,under the principle of dimension rationality,independence,directness and quantification.The indicator classifications were determined.The links among measured data were analyzed in detail,and the objective weight of each indicator was determined by using similar weight method.Thereby the tunnel water inrush risk assessment model is established and applied in four target segments of two different tunnels in engineering.The evaluation results and the actual excavation data agree well,which indicates that the model is of high credibility and feasibility.