In this paper,numerical modeling and model testing of a complex-shaped remotely-operated vehicle(ROV) were shown.The paper emphasized the systematic modeling of hydrodynamic damping using the computational fluid dyn...In this paper,numerical modeling and model testing of a complex-shaped remotely-operated vehicle(ROV) were shown.The paper emphasized the systematic modeling of hydrodynamic damping using the computational fluid dynamic software ANSYS-CFXTM on the complex-shaped ROV,a practice that is not commonly applied.For initial design and prototype testing during the developmental stage,small-scale testing using a free-decaying experiment was used to verify the theoretical models obtained from ANSYS-CFXTM.Simulation results are shown to coincide with the experimental tests.The proposed method could determine the hydrodynamic damping coefficients of the ROV.展开更多
The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and f...The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and flexible lateral confining pressure medium method gives a stress ratio at the initial stage that is not the real K0. Moreover, K0 increases during the loading process becoming greater at high pressures. In the unloading process, however, K0 increases only at the initial stage but decreases thereafter. In addition, the incremental magnitude definition, K0=dσ3/dσ1, gives higher values than the total magnitude definition, K0=σ3/σ1, under loading. This is also true during initial stages of unloading. The experiment results also indicate that earth pressure at rest in deep and thick soils can be estimated by a power function of axial and confining pressures. It is necessary to choose the appropriate Kn to avoid some accidents.展开更多
The tensile stress-strain curves of NiTi wires are obtained by tensile experiments under different heat treatments. A phenomenological physical model based on hysteresis element method is developed to describe the exp...The tensile stress-strain curves of NiTi wires are obtained by tensile experiments under different heat treatments. A phenomenological physical model based on hysteresis element method is developed to describe the experimentally determined stress-strain curves of shape memory alloy (SMA) wires. Numerical simulations are made. Simulation results show that:(1) a series of unusual changes on physical and mechanical properties of SMA wires occur when martensitic, especially R (rhombohedral) phase transformation emerge. The stress-strain relation of SMA wires is highly non-linear; (2) there are no notable yielding phenomena before NiTi wires are broken; (3) numerical results obtained by the physical model are in good agreement with experimental data.展开更多
文摘In this paper,numerical modeling and model testing of a complex-shaped remotely-operated vehicle(ROV) were shown.The paper emphasized the systematic modeling of hydrodynamic damping using the computational fluid dynamic software ANSYS-CFXTM on the complex-shaped ROV,a practice that is not commonly applied.For initial design and prototype testing during the developmental stage,small-scale testing using a free-decaying experiment was used to verify the theoretical models obtained from ANSYS-CFXTM.Simulation results are shown to coincide with the experimental tests.The proposed method could determine the hydrodynamic damping coefficients of the ROV.
基金Projects 50534040 supported by the National Natural Science Foundation of ChinaBK2007040 by the Natural Science Foundation of Jiangsu ProvinceCX08B_103Z by the Post Graduate Research Projects of Jiangsu Province
文摘The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and flexible lateral confining pressure medium method gives a stress ratio at the initial stage that is not the real K0. Moreover, K0 increases during the loading process becoming greater at high pressures. In the unloading process, however, K0 increases only at the initial stage but decreases thereafter. In addition, the incremental magnitude definition, K0=dσ3/dσ1, gives higher values than the total magnitude definition, K0=σ3/σ1, under loading. This is also true during initial stages of unloading. The experiment results also indicate that earth pressure at rest in deep and thick soils can be estimated by a power function of axial and confining pressures. It is necessary to choose the appropriate Kn to avoid some accidents.
文摘The tensile stress-strain curves of NiTi wires are obtained by tensile experiments under different heat treatments. A phenomenological physical model based on hysteresis element method is developed to describe the experimentally determined stress-strain curves of shape memory alloy (SMA) wires. Numerical simulations are made. Simulation results show that:(1) a series of unusual changes on physical and mechanical properties of SMA wires occur when martensitic, especially R (rhombohedral) phase transformation emerge. The stress-strain relation of SMA wires is highly non-linear; (2) there are no notable yielding phenomena before NiTi wires are broken; (3) numerical results obtained by the physical model are in good agreement with experimental data.