In this work, Green-Naghdi (GN) equations with general weight functions were derived in a simple way. A wave-absorbing beach was also considered in the general GN equations. A numerical solution for a level higher t...In this work, Green-Naghdi (GN) equations with general weight functions were derived in a simple way. A wave-absorbing beach was also considered in the general GN equations. A numerical solution for a level higher than 4 was not feasible in the past with the original GN equations. The GN equations for shallow water waves were simplified here, which make the application of high level (higher than 4) equations feasible. The linear dispersion relationships of the first seven levels were presented. The accuracy of dispersion relationships increased as the level increased. Level 7 GN equations are capable of simulating waves out to wave number times depth kd 〈 26. Numerical simulation of nonlinear water waves was performed by use of Level 5 and 7 GN equations, which will be presented in the next paper.展开更多
基金Supported by the Special Fund for Basic Scientific Research of Central Colleges Harbin Engineering University(Harbin)the National Natural Science Foundation of China+1 种基金Doctor Subject Foundation of the Ministry of Education of Chinathe"111"project(B07019)
文摘In this work, Green-Naghdi (GN) equations with general weight functions were derived in a simple way. A wave-absorbing beach was also considered in the general GN equations. A numerical solution for a level higher than 4 was not feasible in the past with the original GN equations. The GN equations for shallow water waves were simplified here, which make the application of high level (higher than 4) equations feasible. The linear dispersion relationships of the first seven levels were presented. The accuracy of dispersion relationships increased as the level increased. Level 7 GN equations are capable of simulating waves out to wave number times depth kd 〈 26. Numerical simulation of nonlinear water waves was performed by use of Level 5 and 7 GN equations, which will be presented in the next paper.