The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the ...The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the bypass ratio and the scarf angle on the mixing performance for the scarfed lobed mixer. Results show that the scarfed lobed mixer is reduced in the system weight. Meanwhile, aerodynamic performances are slightly improved compared with the normal lobed mixer. Two reasons for causing the mixing enhancement between the core and the bypass flow are as follows: (1) The stream-wise vortices shed from the training edge of the half/full scarfed lobed mixer earlier is enhanced by about 25%. (2) The mixing augmentation is also associated with the increase of the interface length caused by scarfing. The thermal mixing efficiency is enhanced with the increase of the bypass ratio and the scarfing angle. The scarfed lobed mixer design has no negative effects on the pressure loss. The total pressure recovery coefficient reaches above 0. 935 in various bypass ratios and scarfed angles. As the bypass ratio increases, the total pressure recovery coefficient also increases for the scarfed lobed mixer.展开更多
Planing vessels are applied widely in civil and military situations.Due to their high speed,the motion of planning vessels is complex.In order to predict the motion of planning vessels,it is important to analyze the h...Planing vessels are applied widely in civil and military situations.Due to their high speed,the motion of planning vessels is complex.In order to predict the motion of planning vessels,it is important to analyze the hydrodynamic performance of planning vessels at high speeds.The computational fluid dynamic method(CFD) has been proposed to calculate hydrodynamic performance of planning vessels.However,in most traditional CFD approaches,model tests or empirical formulas are needed to obtain the running attitude of the planing vessels before calculation.This paper presents a new CFD method to calculate hydrodynamic forces of planing vessels.The numerical method was based on Reynolds-Averaged Navier-Stokes(RANS) equations.The volume of fluid(VOF) method and the six-degrees-of-freedom equation were applied.An effective process was introduced to solve the numerical divergence problem in numerical simulation.Compared with experimental results,numerical simulation results indicate that both the running attitude and hydrodynamic performance can be predicted well at high speeds.展开更多
The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the ...The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the microbubble generator directly influences flotation column performance by affecting bubble size and distribution as well as gas holdup in the column. However, the complicated flow inside the generator results in high R&D costs and difficulty in testing. Thus, the CFD software, FLUENT, was used to simulate the gas-liquid two-phase flow inside a self-absorbing microbubble generator. The effect of area ratio, a key structural parameter, was studied in detail. Critical flow-field parameters including velocity, turbulent kinetic energy, minimum static pressure and gas holdup were obtained. The simulation results demonstrate that the optimum area ratio is 3.展开更多
基金Supported by the Civil Aviation Research Foundation of Nanjing University of Aeronautics and Astronautics~~
文摘The flow field and aerodynamic performances for the scarfed lobed forced mixer are studied based on a computational fluid dynamics(CFD) technique. A series of computations are conducted to obtain the effects of the bypass ratio and the scarf angle on the mixing performance for the scarfed lobed mixer. Results show that the scarfed lobed mixer is reduced in the system weight. Meanwhile, aerodynamic performances are slightly improved compared with the normal lobed mixer. Two reasons for causing the mixing enhancement between the core and the bypass flow are as follows: (1) The stream-wise vortices shed from the training edge of the half/full scarfed lobed mixer earlier is enhanced by about 25%. (2) The mixing augmentation is also associated with the increase of the interface length caused by scarfing. The thermal mixing efficiency is enhanced with the increase of the bypass ratio and the scarfing angle. The scarfed lobed mixer design has no negative effects on the pressure loss. The total pressure recovery coefficient reaches above 0. 935 in various bypass ratios and scarfed angles. As the bypass ratio increases, the total pressure recovery coefficient also increases for the scarfed lobed mixer.
基金Supported by the National Natural Science Foundation of China (51009038/E091002)
文摘Planing vessels are applied widely in civil and military situations.Due to their high speed,the motion of planning vessels is complex.In order to predict the motion of planning vessels,it is important to analyze the hydrodynamic performance of planning vessels at high speeds.The computational fluid dynamic method(CFD) has been proposed to calculate hydrodynamic performance of planning vessels.However,in most traditional CFD approaches,model tests or empirical formulas are needed to obtain the running attitude of the planing vessels before calculation.This paper presents a new CFD method to calculate hydrodynamic forces of planing vessels.The numerical method was based on Reynolds-Averaged Navier-Stokes(RANS) equations.The volume of fluid(VOF) method and the six-degrees-of-freedom equation were applied.An effective process was introduced to solve the numerical divergence problem in numerical simulation.Compared with experimental results,numerical simulation results indicate that both the running attitude and hydrodynamic performance can be predicted well at high speeds.
基金Financial supports for this work provided by the National High Technology Research and Development Program of China (No.2008BAB31B02) is gratefully acknowledged
文摘The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the microbubble generator directly influences flotation column performance by affecting bubble size and distribution as well as gas holdup in the column. However, the complicated flow inside the generator results in high R&D costs and difficulty in testing. Thus, the CFD software, FLUENT, was used to simulate the gas-liquid two-phase flow inside a self-absorbing microbubble generator. The effect of area ratio, a key structural parameter, was studied in detail. Critical flow-field parameters including velocity, turbulent kinetic energy, minimum static pressure and gas holdup were obtained. The simulation results demonstrate that the optimum area ratio is 3.