期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
敏感SVD和EEMD的故障诊断方法研究 被引量:3
1
作者 齐鹏 范玉刚 冯早 《传感器与微系统》 CSCD 2018年第2期67-71,共5页
在噪声干扰下有效提取振动信号所包含的微弱故障特征,是轴承故障诊断的关键问题,提出了一种基于敏感奇异值分解(SSVD)和总体平均经验模态分解(EEMD)的故障诊断方法。对时域振动信号进行敏感SVD分析,通过敏感因子选择反映故障冲击特征的... 在噪声干扰下有效提取振动信号所包含的微弱故障特征,是轴承故障诊断的关键问题,提出了一种基于敏感奇异值分解(SSVD)和总体平均经验模态分解(EEMD)的故障诊断方法。对时域振动信号进行敏感SVD分析,通过敏感因子选择反映故障冲击特征的敏感SVD分量,并利用定位因子定位分量信号所对应奇异值进行振动信号重构,以滤除噪声干扰;对降噪信号进行EEMD,根据峭度准则选取故障信息丰富的敏感固有模态分量(IMF),有效提取局部微弱故障信息;利用Teager-Kaiser能量算子(TKEO)计算故障信息的瞬时能量,并对其进行频谱分析,获取故障特征频率,以识别故障类型。方法应用于轴承故障诊断,实验证明了所提方法的有效性。 展开更多
关键词 敏感奇异值分解 总体平均经验模态分解 敏感因子 定位因子 峭度准则 Teager-Kaiser能量算子
在线阅读 下载PDF
基于ITD和敏感SVD的故障诊断方法研究 被引量:2
2
作者 齐鹏 范玉刚 冯早 《华中师范大学学报(自然科学版)》 CAS 北大核心 2016年第6期818-825,共8页
如何在含有噪声的振动信号中提取故障特征,是轴承故障诊断的关键问题,为此本文提出一种基于本征时间尺度分解(Intrinsic Time-scale Decomposition,ITD)和敏感奇异值分解(Sensitive Singular Value Decomposition,SSVD)的故障诊断方法.... 如何在含有噪声的振动信号中提取故障特征,是轴承故障诊断的关键问题,为此本文提出一种基于本征时间尺度分解(Intrinsic Time-scale Decomposition,ITD)和敏感奇异值分解(Sensitive Singular Value Decomposition,SSVD)的故障诊断方法.首先对时域振动信号进行ITD预处理,并根据峭度准则选取包含故障信息的敏感旋转(Proper Rotation,PR)分量用于振动信号重构,以凸显振动信号局部特征;然后对此时频信号进行敏感SVD分析,通过敏感因子及定位因子选择敏感SVD分量重构信号,以滤除噪声干扰,提取微弱故障信息;最后利用Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)计算故障信息的瞬时能量,并对其进行频谱分析,获取故障特征频率,用于识别故障类型.将此方法应用于轴承故障诊断,实验证明了所提方法的有效性. 展开更多
关键词 本征时间尺度分解 敏感奇异值分解 峭度准则 敏感因子 定位因子 Teager-Kaiser能量算子
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部