基于模块化多电平换流器的直流输电(modularmultilevel converter based HVDC,MMC-HVDC)阀的损耗研究目前还没有。由于MMC阀拓扑的特殊性,传统晶闸管和绝缘栅双极晶体管串联阀换流器的损耗计算方法均不能直接应用,文章结合其子模块特有...基于模块化多电平换流器的直流输电(modularmultilevel converter based HVDC,MMC-HVDC)阀的损耗研究目前还没有。由于MMC阀拓扑的特殊性,传统晶闸管和绝缘栅双极晶体管串联阀换流器的损耗计算方法均不能直接应用,文章结合其子模块特有的半导体器件的开关特性,分析了MMC子模块投入和切除的具体物理过程;结合换流器拓扑结构和面积等效调制算法,推导了典型工况下MMC阀的损耗与阀电压、电流、调制算法的关系,为MMC-HVDC输电系统的降损设计提供了依据。展开更多
Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extens...Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.展开更多
文摘基于模块化多电平换流器的直流输电(modularmultilevel converter based HVDC,MMC-HVDC)阀的损耗研究目前还没有。由于MMC阀拓扑的特殊性,传统晶闸管和绝缘栅双极晶体管串联阀换流器的损耗计算方法均不能直接应用,文章结合其子模块特有的半导体器件的开关特性,分析了MMC子模块投入和切除的具体物理过程;结合换流器拓扑结构和面积等效调制算法,推导了典型工况下MMC阀的损耗与阀电压、电流、调制算法的关系,为MMC-HVDC输电系统的降损设计提供了依据。
基金Project(52175445)supported by the National Natural Science Foundation of ChinaProject(2022JJ30743)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2023GK2024)supported by the Key Research and Development Program of Hunan Province,ChinaProject(2023ZZTS0391)supported by the Fundamental Research Funds for the Central Universities of China。
文摘Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.