期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
RCMNAAPE在旋转机械故障诊断中的应用
1
作者 储祥冬 戴礼军 +3 位作者 涂金洲 罗震寰 于震 秦磊 《机电工程》 CAS 北大核心 2024年第6期1039-1049,共11页
针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机... 针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机(GWO-SVM)的旋转机械故障诊断方法。首先,利用幅值感知排列熵替换了RCMPE中的排列熵,提出了RCMNAAPE,并将其用于提取旋转机械振动信号的故障特征生成特征样本;随后,采用了LS从原始的高维故障特征向量中筛选出较少的能够更准确描述故障状态的特征,构造敏感特征样本;最后,将低维的故障特征向量输入由灰狼算法优化的支持向量机中进行了训练和测试,完成了旋转机械样本的故障识别和分类,利用滚动轴承和齿轮箱故障数据集将RCMNAAPE-LS-GWO-SVM与其他故障诊断方法进行了对比分析,并开展了评估。研究结果表明:基于RCMNAAPE-LS-GWO-SVM的故障诊断方法能够有效识别旋转机械的各类故障,其识别准确率高于其他对比的故障诊断方法,其中滚动轴承故障的识别准确率达到99.33%,齿轮箱故障的识别准确率达到98.67%。虽然,该方法的特征提取效率不佳,平均特征提取时间分别为153.02 s和163.98 s,仅优于精细复合多尺度模糊熵(RCMFE),但其综合性能更加优异。 展开更多
关键词 故障识别准确率 滚动轴承 齿轮箱 精细复合多尺度归一化幅值感知排列熵 拉普拉斯分数 灰狼优化支持向量机
在线阅读 下载PDF
轮式拖拉机的发动机常见故障智能监测研究 被引量:14
2
作者 袁苗达 《农机化研究》 北大核心 2022年第11期248-252,共5页
为进一步优化我国农用拖拉机的结构布局与工作效率,创新性地融入大数据分析与智能传感技术,针对其发动机常见故障进行智能识别与监测研究。通过明确轮式拖拉机发动机的结构组成与工作原理,将数据深度挖掘与常见故障数据库有效结合,建立... 为进一步优化我国农用拖拉机的结构布局与工作效率,创新性地融入大数据分析与智能传感技术,针对其发动机常见故障进行智能识别与监测研究。通过明确轮式拖拉机发动机的结构组成与工作原理,将数据深度挖掘与常见故障数据库有效结合,建立发动机故障监测模型,进行软件功能设计与硬件配置优化后形成完整的故障监测系统,并展开发动机常见故障智能监测试验。试验结果表明:经智能优化后的拖拉机发动机故障监测系统运行稳定可靠,平均故障识别时间可缩短至3.25s,故障识别准确率达到94.29%,相对提升了9.79%;发动机工作效率可提高至92.30%,有效降低了拖拉机整机停机率,验证了该智能设计应用的合理可行性,可为类似农机装备改善优化提供较好的优化思路。 展开更多
关键词 轮式拖拉机 发动机 故障数据库 监测模型 故障识别准确率
在线阅读 下载PDF
基于PSO-PNN与CV-SVM的旋转机械故障诊断研究 被引量:4
3
作者 龚永康 李雯 +3 位作者 喻菲菲 杜灿谊 陈国燕 刘利武 《机电工程》 CAS 北大核心 2023年第9期1395-1402,共8页
不同类型的旋转机械发生故障时会激发出不同特征的振动信号。针对旋转机械故障点位判断难、复合故障判断不准确等问题,构建了概率神经网络(PNN)以及支持向量机(SVM)这两种人工智能模型,并采用该模型对旋转机械进行了故障识别研究。首先... 不同类型的旋转机械发生故障时会激发出不同特征的振动信号。针对旋转机械故障点位判断难、复合故障判断不准确等问题,构建了概率神经网络(PNN)以及支持向量机(SVM)这两种人工智能模型,并采用该模型对旋转机械进行了故障识别研究。首先,采集了研究对象各故障状态下的振动信号,对振动信号的时域和频谱进行了分析,根据振动信号的特征表现,分别将原始振动信号幅值和振动信号特征值作为人工智能模型的输入向量;然后,利用粒子群算法(PSO)对概率神经网络的输入参数进行了优化,利用交叉验证法(CV)对支持向量机的输入参数进行了优化;最后,建立了概率神经网络和支持向量机故障诊断模型,对旋转机械故障进行了诊断,并对比分析了诊断结果。研究结果表明:基于PSO-PNN模型的旋转机械故障识别准确率在97%以上;基于CV-SVM模型的旋转机械故障识别准确率在98%以上;这两种人工智能方法在用于旋转机械故障诊断时具有速度快、准确率高的优点;其中,PSO-PNN方法适用于旋转机械故障实时监测,CV-SVM方法适用于旋转机械复杂故障的识别。 展开更多
关键词 转动机件 粒子群算法 概率神经网络 交叉验证法 支持向量机 故障识别准确率
在线阅读 下载PDF
基于CEEMDAN-MFDE-HHO-SVM的机载燃油泵故障辨识 被引量:3
4
作者 刘军龙 俞凯耀 张相春 《机电工程》 CAS 北大核心 2023年第10期1616-1623,共8页
针对机载燃油泵振动信号的有效分量相互耦合、故障特征提取困难,进而导致故障识别准确率低的问题,提出了一种基于自适应噪声完备经验模态分解(CEEMDAN)、多尺度波动散布熵(MFDE)和哈里斯鹰算法(HHO)优化支持向量机(SVM)的机载燃油泵故... 针对机载燃油泵振动信号的有效分量相互耦合、故障特征提取困难,进而导致故障识别准确率低的问题,提出了一种基于自适应噪声完备经验模态分解(CEEMDAN)、多尺度波动散布熵(MFDE)和哈里斯鹰算法(HHO)优化支持向量机(SVM)的机载燃油泵故障辨识方法(CEEMDAN-MFDE-HHO-SVM)。首先,采用CEEMDAN方法对机载燃油泵振动信号进行了自适应分解,生成了一组从低频到高频分布的本征模态函数(IMF),并选择包含冲击信息较多的IMF分量进行了信号重构,得到了噪声含量较低的信号;然后,采用MFDE方法计算了低噪信号的熵值,构造了表征样本故障属性的特征矩阵;最后,采用HHO算法对SVM的关键参数进行了优化,以构造基于HHO-SVM模型的多故障分类器,对机载燃油泵的故障进行了辨识;基于实测机载燃油泵故障数据集,将CEEMDAN-MFDE-HHO-SVM方法与其他组合方法进行了对比分析。研究结果表明:该故障辨识模型的故障分类准确率达到了100%,在信号处理、熵值特征提取和分类器方面都优于其他对比方法;该模型不仅具有更高的分类准确率,而且具有更优异的效率,后续可以将其推广到其他机械设备的故障辨识中。 展开更多
关键词 故障识别准确率 自适应噪声完备经验模态分解 多尺度波动散布熵 哈里斯鹰优化 支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部