电力系统发生大面积复杂故障后,调度人员仅仅依靠来自数据采集与监视控制(supervisory control and data acquisition,SCADA)系统的保护和开关接点的变位信息难以做出准确的判断,来自故障录波装置记录的模拟量信息越来越成为故障诊断和...电力系统发生大面积复杂故障后,调度人员仅仅依靠来自数据采集与监视控制(supervisory control and data acquisition,SCADA)系统的保护和开关接点的变位信息难以做出准确的判断,来自故障录波装置记录的模拟量信息越来越成为故障诊断和系统恢复的重要依据。为了进一步提高超高压输电线路故障类型识别率和计算速度,文中利用提升小波和PNN网络构造了新的小波神经网络故障识别模型,应用bior3.1提升小波对故障电流进行分解,将分解到的 (0,375)Hz频率段的小波系数输入到PNN神经网络。通过 ATP仿真及华东电网实际故障录波数据的测试和比较结果表明:该模型具有很高的识别率和收敛速度,并有望将该模型应用到电网故障诊断系统。展开更多
对配电网故障类型的及时准确识别有助于故障定位和事故分析等。提出一种基于奇异值分解(SVD)和多级支持向量机(SVM)的配电网故障类型识别方法。首先通过希尔伯特-黄变换(HHT)带通滤波算法对三相电压/电流、零序电压等7个故障波形进行等...对配电网故障类型的及时准确识别有助于故障定位和事故分析等。提出一种基于奇异值分解(SVD)和多级支持向量机(SVM)的配电网故障类型识别方法。首先通过希尔伯特-黄变换(HHT)带通滤波算法对三相电压/电流、零序电压等7个故障波形进行等频宽分解,构造时频矩阵。然后将时频矩阵SVD得到的部分有效奇异值作为特征量,输入到多级SVM进行训练和分类识别。利用PSCAD/EMTDC软件搭建10 k V配电网模型用于获取训练样本和测试样本。测试结果表明,该方法对配电网单相接地、两相接地、两相短路、三相短路等10种故障类型的识别正确率较高,且在噪声干扰、采样不同步、系统网络结构改变、负荷电流变化、系统中性点经消弧线圈接地、系统等值阻抗变化、分布式电源接入等情况下均有较好的适应性。展开更多
文摘电力系统发生大面积复杂故障后,调度人员仅仅依靠来自数据采集与监视控制(supervisory control and data acquisition,SCADA)系统的保护和开关接点的变位信息难以做出准确的判断,来自故障录波装置记录的模拟量信息越来越成为故障诊断和系统恢复的重要依据。为了进一步提高超高压输电线路故障类型识别率和计算速度,文中利用提升小波和PNN网络构造了新的小波神经网络故障识别模型,应用bior3.1提升小波对故障电流进行分解,将分解到的 (0,375)Hz频率段的小波系数输入到PNN神经网络。通过 ATP仿真及华东电网实际故障录波数据的测试和比较结果表明:该模型具有很高的识别率和收敛速度,并有望将该模型应用到电网故障诊断系统。
文摘对配电网故障类型的及时准确识别有助于故障定位和事故分析等。提出一种基于奇异值分解(SVD)和多级支持向量机(SVM)的配电网故障类型识别方法。首先通过希尔伯特-黄变换(HHT)带通滤波算法对三相电压/电流、零序电压等7个故障波形进行等频宽分解,构造时频矩阵。然后将时频矩阵SVD得到的部分有效奇异值作为特征量,输入到多级SVM进行训练和分类识别。利用PSCAD/EMTDC软件搭建10 k V配电网模型用于获取训练样本和测试样本。测试结果表明,该方法对配电网单相接地、两相接地、两相短路、三相短路等10种故障类型的识别正确率较高,且在噪声干扰、采样不同步、系统网络结构改变、负荷电流变化、系统中性点经消弧线圈接地、系统等值阻抗变化、分布式电源接入等情况下均有较好的适应性。