期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合马田系统-SVM的滚动轴承故障模式分类研究
被引量:
5
1
作者
韩卫宇
程龙生
《计算机工程与应用》
CSCD
北大核心
2021年第6期239-246,共8页
为了有效地确定滚动轴承的故障类型和受损程度,提出了结合马田系统和SVM的滚动轴承故障模式分类方法。利用EEMD方法对原始振动信号进行分解,得到一系列IMF。经过故障敏感IMF选取方法筛选IMF后计算其时域和频域特征参数以及原始信号的能...
为了有效地确定滚动轴承的故障类型和受损程度,提出了结合马田系统和SVM的滚动轴承故障模式分类方法。利用EEMD方法对原始振动信号进行分解,得到一系列IMF。经过故障敏感IMF选取方法筛选IMF后计算其时域和频域特征参数以及原始信号的能量熵参数,构造初始的多维特征空间。运用马田系统中的正交表和信噪比进行特征降维,得到精简特征空间。接下来使用偏二叉树方法构建支持向量机多分类模型。通过实验数据进行模型验证,结果表明该方法可以实现滚动轴承故障模式分类。
展开更多
关键词
故障模式分类
马田系统(MTS)
支持向量机(SVM)
集合经验模态分解(EEMD)
在线阅读
下载PDF
职称材料
题名
结合马田系统-SVM的滚动轴承故障模式分类研究
被引量:
5
1
作者
韩卫宇
程龙生
机构
南京理工大学经济管理学院
出处
《计算机工程与应用》
CSCD
北大核心
2021年第6期239-246,共8页
基金
国家自然科学基金(71271114)。
文摘
为了有效地确定滚动轴承的故障类型和受损程度,提出了结合马田系统和SVM的滚动轴承故障模式分类方法。利用EEMD方法对原始振动信号进行分解,得到一系列IMF。经过故障敏感IMF选取方法筛选IMF后计算其时域和频域特征参数以及原始信号的能量熵参数,构造初始的多维特征空间。运用马田系统中的正交表和信噪比进行特征降维,得到精简特征空间。接下来使用偏二叉树方法构建支持向量机多分类模型。通过实验数据进行模型验证,结果表明该方法可以实现滚动轴承故障模式分类。
关键词
故障模式分类
马田系统(MTS)
支持向量机(SVM)
集合经验模态分解(EEMD)
Keywords
failure modes classification
Mahalanobis-Taguchi System(MTS)
Support Vector Machine(SVM)
Ensemble Empirical Mode Decomposition(EEMD)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合马田系统-SVM的滚动轴承故障模式分类研究
韩卫宇
程龙生
《计算机工程与应用》
CSCD
北大核心
2021
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部