期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于LSTM循环神经网络的故障时间序列预测 被引量:383
1
作者 王鑫 吴际 +3 位作者 刘超 杨海燕 杜艳丽 牛文生 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第4期772-784,共13页
有效地预测使用阶段的故障数据对于合理制定可靠性计划以及开展可靠性维护活动等具有重要的指导意义。从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和... 有效地预测使用阶段的故障数据对于合理制定可靠性计划以及开展可靠性维护活动等具有重要的指导意义。从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和预测过程实现算法等,进一步以预测误差最小为目标,提出了一种基于多层网格搜索的LSTM预测模型参数优选算法,通过与多种典型时间序列预测模型的实验对比,验证了所提出的LSTM预测模型及其参数优选算法在故障时间序列分析中具有很强的适用性和更高的准确性。 展开更多
关键词 长短期记忆(LSTM)模型 循环神经网络 故障时间序列预测 多层网格搜索 深度学习
在线阅读 下载PDF
奇异谱分析在故障时间序列分析中的应用 被引量:15
2
作者 王鑫 吴际 +3 位作者 刘超 牛文生 张华 张奎 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第11期2321-2331,共11页
由于日益增长的飞行安全和飞机维护质量需求,飞机使用可靠性已经成为一个重要的研究领域。从某航空公司波音737飞机使用过程中现场所记录的18年的故障数据出发,应用奇异谱分析(SSA)方法,对故障时间序列进行了建模和预测,进一步以预测结... 由于日益增长的飞行安全和飞机维护质量需求,飞机使用可靠性已经成为一个重要的研究领域。从某航空公司波音737飞机使用过程中现场所记录的18年的故障数据出发,应用奇异谱分析(SSA)方法,对故障时间序列进行了建模和预测,进一步以预测结果的均方根误差(RMSE)最小为优化目标对SSA模型参数进行了优选。在此基础上,提出了一种更为广泛的模型组合方法和实现算法,这种方法采用不同的时间序列模型来构造SSA分解出的趋势、周期和残差等成分。通过与三次指数平滑(Holt-Winters)、自回归移动平均(ARIMA)2种时间序列模型的实验结果对比,SSA及其参数优选和模型组合方法在故障时间序列分析中具有更好的拟合和预测精度。 展开更多
关键词 奇异谱分析(SSA) 故障时间序列 预测 参数优选 模型组合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部