期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于时序特征模式识别的列车网侧过流故障实时诊断 被引量:7
1
作者 倪强 李学明 +1 位作者 刘侃 黄庆 《中国电机工程学报》 EI CSCD 北大核心 2022年第11期3963-3974,共12页
为了提升列车的智能化水平与现场检修效率,文中从系统角度出发,针对高速列车牵引传动系统网侧过流的精确故障定位问题,提出一种基于故障时序特征模式识别的实时诊断方法。该方法首先通过机理分析选择故障源集合关联的系统信号,其次,结... 为了提升列车的智能化水平与现场检修效率,文中从系统角度出发,针对高速列车牵引传动系统网侧过流的精确故障定位问题,提出一种基于故障时序特征模式识别的实时诊断方法。该方法首先通过机理分析选择故障源集合关联的系统信号,其次,结合案例数据波形与专家经验,挖掘故障源与系统信号的关联规律,提取相关故障特征指标;然后,基于故障特征指标的时序变化特性,利用高斯混合模型与隐层马尔科夫链算法建立列车网侧过流的时序特征辨识的故障诊断模型。最后,应用列车实际运行数据对提出的故障诊断模型进行验证,实验结果表明,所提算法能实现有效的故障检测与隔离功能,具有良好的应用价值。 展开更多
关键词 故障时序特征 时序特征模式识别 高斯混合模型与隐层马尔科夫链 实时诊断 牵引传动系统
在线阅读 下载PDF
Machine learning based online fault prognostics for nonstationary industrial process via degradation feature extraction and temporal smoothness analysis 被引量:2
2
作者 HU Yun-yun ZHAO Chun-hui KE Zhi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3838-3855,共18页
Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in gen... Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process. 展开更多
关键词 fault prognostic NONSTATIONARY industrial process fault degradation-oriented slow feature analysis(FDSFA) temporal smoothness regularization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部