期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于AC-CNN模型的过程故障识别
被引量:
5
1
作者
衷路生
吴春磊
《计算机工程与设计》
北大核心
2020年第2期542-549,共8页
针对复杂工业过程中故障变量特征提取效率低,分类数量较少且故障识别率较低等问题,提出基于非对称卷积核(asymmetric convolutions)的卷积神经网络(CNN)的工业过程故障识别模型。采取故障变量重构对故障数据进行预处理;引入非对称卷积...
针对复杂工业过程中故障变量特征提取效率低,分类数量较少且故障识别率较低等问题,提出基于非对称卷积核(asymmetric convolutions)的卷积神经网络(CNN)的工业过程故障识别模型。采取故障变量重构对故障数据进行预处理;引入非对称卷积核模型对重构后的输入故障变量进行特征提取,提高特征提取的效率;根据CNN模型改进得到具有AC架构的AC-CNN模型,识别TE(田纳西-伊斯曼)过程故障的在线测试集样本,实验结果表明,所提方法对TE过程故障数据集的识别效果明显,验证了模型的有效性和优异性。
展开更多
关键词
故障
识别
故障变量重构
非对称卷积核
卷积神经网络
田纳西-伊斯曼过程
在线阅读
下载PDF
职称材料
题名
基于AC-CNN模型的过程故障识别
被引量:
5
1
作者
衷路生
吴春磊
机构
华东交通大学电气与自动化工程学院
出处
《计算机工程与设计》
北大核心
2020年第2期542-549,共8页
基金
国家自然科学基金项目(61863012、61263010、60904049)
江西省科技厅基金项目(20181BBE50020、20161BBE50082、20161BAB202067)
文摘
针对复杂工业过程中故障变量特征提取效率低,分类数量较少且故障识别率较低等问题,提出基于非对称卷积核(asymmetric convolutions)的卷积神经网络(CNN)的工业过程故障识别模型。采取故障变量重构对故障数据进行预处理;引入非对称卷积核模型对重构后的输入故障变量进行特征提取,提高特征提取的效率;根据CNN模型改进得到具有AC架构的AC-CNN模型,识别TE(田纳西-伊斯曼)过程故障的在线测试集样本,实验结果表明,所提方法对TE过程故障数据集的识别效果明显,验证了模型的有效性和优异性。
关键词
故障
识别
故障变量重构
非对称卷积核
卷积神经网络
田纳西-伊斯曼过程
Keywords
fault identification
fault variable reconstruction
asymmetric convolution kernel
convolutional neural network
Tennessee-Eastman process
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于AC-CNN模型的过程故障识别
衷路生
吴春磊
《计算机工程与设计》
北大核心
2020
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部