期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进层次斜率熵(IHSloE)的信号低频和高频故障特征提取方法 被引量:1
1
作者 许立学 刘鑫 +2 位作者 关文锦 陈然 邝素琴 《机电工程》 CAS 北大核心 2024年第7期1189-1197,1230,共10页
采用传统的基于粗粒化处理的多尺度特征提取方法,无法提取故障信号中的高频部分的故障信息,导致其提取到的故障特征难以准确地表征滚动轴承的故障状态和动态特性,无法保证故障诊断的可靠性和准确性。针对该缺陷,提出了一种基于改进层次... 采用传统的基于粗粒化处理的多尺度特征提取方法,无法提取故障信号中的高频部分的故障信息,导致其提取到的故障特征难以准确地表征滚动轴承的故障状态和动态特性,无法保证故障诊断的可靠性和准确性。针对该缺陷,提出了一种基于改进层次斜率熵(IHSloE)和随机森林(RF)的滚动轴承故障诊断方法。首先,利用改进层次化处理代替粗粒化处理,实现了信号的多尺度分析目的,基于斜率熵,提出了改进层次斜率熵的非线性动力学指标;随后,利用IHSloE方法提取了滚动轴承振动信号的故障特征,建立了表征滚动轴承故障特性的故障特征;最后,基于RF模型建立了多故障分类器,并将故障特征输入至RF分类器进行了训练和测试,以实现滚动轴承的故障识别目的;利用滚动轴承数据集进行了实验,并将其与其他的故障特征提取指标进行了对比。研究结果表明:IHSloE方法采用改进的层次化处理,能够快速有效地提取出振动信号中的高频故障特征,诊断准确率达到了99%,而特征提取时间仅为149.35 s;相较于采用粗粒化处理和层次处理的特征提取方法,其准确率至少提高了2%和1%,证明该方法适用于滚动轴承的故障诊断。 展开更多
关键词 故障信号高频部分特征 改进层次斜率熵 随机森林(RF)分类器 多尺度特征提取方法 改进层次化处理 故障诊断的可靠性
在线阅读 下载PDF
SO-VMD和IHFDE在旋转机械耦合故障辨识中的应用
2
作者 张文军 宋琳璐 +1 位作者 左小勇 王冠华 《机电工程》 北大核心 2025年第4期714-725,共12页
采用传统旋转机械故障诊断模型诊断单点故障而忽略多点故障缺陷,无法准确判断旋转机械的故障来源,提出了一种基于蛇优化器的优化变分模态分解(SO-VMD)、改进层次波动散布熵(IHFDE)和支持向量机(SVM)的旋转机械耦合故障诊断方法。首先,... 采用传统旋转机械故障诊断模型诊断单点故障而忽略多点故障缺陷,无法准确判断旋转机械的故障来源,提出了一种基于蛇优化器的优化变分模态分解(SO-VMD)、改进层次波动散布熵(IHFDE)和支持向量机(SVM)的旋转机械耦合故障诊断方法。首先,以模态分量的最大互信息系数为适应度函数,采用蛇优化器对变分模态分解的参数进行了优化,并对旋转机械振动信号进行了分解以得到模态分量;然后,对各模态分量的IHFDE特征值进行了提取,从而构建了故障特征矩阵;最后,将故障特征输入至SVM分类器中进行了分类识别,并实现了对旋转机械的故障诊断。利用滚动轴承和齿轮箱的多点故障数据集进行了实验分析,从信号处理和特征提取两方面进行了对比分析。研究结果表明:SO-VMD-IHFDE故障诊断方法在诊断旋转机械的单点和多点故障时分别取得了98.75%和100%的识别精度,验证了该方法的有效性。SO-VMD方法能够有效去除信号中的干扰噪声,提高特征的质量。和未采用SO-VMD方法得到的诊断结果相比,滚动轴承和齿轮箱的诊断准确率分别提高了3.33%和5.42%。IHFDE方法能够有效反映旋转机械的故障特性,准确率高于其他广泛使用的特征提取方法。旋转机械的故障诊断结果验证了改进层次分析在诊断准确率方面要优于粗粒化处理和传统层次分析。 展开更多
关键词 旋转机械 耦合故障诊断 变分模态分解 改进层次波动散布熵 蛇优化器 多点故障 耦合故障 信号高频特征信息
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部