该文对基于非实时信道状态信息(Channel State Information,CSI)的多用户放大转发(Amplify-and-Forward,AF)协作通信系统的性能进行分析。系统采用一点对多点的通信系统模型,中继节点根据过时的CSI选择用户。通过推导得出中断概率、信...该文对基于非实时信道状态信息(Channel State Information,CSI)的多用户放大转发(Amplify-and-Forward,AF)协作通信系统的性能进行分析。系统采用一点对多点的通信系统模型,中继节点根据过时的CSI选择用户。通过推导得出中断概率、信道容量和符号错误概率(Symbol Error Rate,SER)的近似表达式。理论分析适用于链路同分布或者非同分布。仿真结果验证理论的正确性,并说明了各种参数对系统性能的影响。同时指出,增加用户数并不能提高系统性能,性能的提高可以通过改变中继的位置来实现。展开更多
随着设备小型化的发展趋势,天线间距较小,信道具有相关性;且假设发射端处于高速移动状态,无法获得完全信道状态信息,只能根据部分信道状态信息设计发射端波束形成方案。针对发射端和接收端配置多天线的固定增益放大转发无线中继系统,以...随着设备小型化的发展趋势,天线间距较小,信道具有相关性;且假设发射端处于高速移动状态,无法获得完全信道状态信息,只能根据部分信道状态信息设计发射端波束形成方案。针对发射端和接收端配置多天线的固定增益放大转发无线中继系统,以最大化接收端信噪比为准则,设计了基于部分信道状态信息的波束形成方案,推导了系统中断概率和平均误符号率的闭合表达式,通过仿真验证了性能分析的有效性和所设计方案的优越性。在平均误符号率为10-2、相关系数为0.8时,所提方案比反馈信道状态信息的方案节约1.6 d B的信噪比。展开更多
文摘该文对基于非实时信道状态信息(Channel State Information,CSI)的多用户放大转发(Amplify-and-Forward,AF)协作通信系统的性能进行分析。系统采用一点对多点的通信系统模型,中继节点根据过时的CSI选择用户。通过推导得出中断概率、信道容量和符号错误概率(Symbol Error Rate,SER)的近似表达式。理论分析适用于链路同分布或者非同分布。仿真结果验证理论的正确性,并说明了各种参数对系统性能的影响。同时指出,增加用户数并不能提高系统性能,性能的提高可以通过改变中继的位置来实现。
文摘随着设备小型化的发展趋势,天线间距较小,信道具有相关性;且假设发射端处于高速移动状态,无法获得完全信道状态信息,只能根据部分信道状态信息设计发射端波束形成方案。针对发射端和接收端配置多天线的固定增益放大转发无线中继系统,以最大化接收端信噪比为准则,设计了基于部分信道状态信息的波束形成方案,推导了系统中断概率和平均误符号率的闭合表达式,通过仿真验证了性能分析的有效性和所设计方案的优越性。在平均误符号率为10-2、相关系数为0.8时,所提方案比反馈信道状态信息的方案节约1.6 d B的信噪比。