期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于半监督学习的无线网络攻击行为检测优化方法 被引量:45
1
作者 王婷 王娜 +1 位作者 崔运鹏 李欢 《计算机研究与发展》 EI CSCD 北大核心 2020年第4期791-802,共12页
针对如何优化深度学习技术在海量高维复杂的无线网络流量数据中有效发现异常攻击行为的问题,提出一种基于半监督学习的无线网络攻击行为检测优化方法(WiFi network attacks detection optimization method,WiFi-ADOM).首先基于无监督学... 针对如何优化深度学习技术在海量高维复杂的无线网络流量数据中有效发现异常攻击行为的问题,提出一种基于半监督学习的无线网络攻击行为检测优化方法(WiFi network attacks detection optimization method,WiFi-ADOM).首先基于无监督学习模型栈式稀疏自编码器提出2种网络流量特征表示向量:新特征值向量和原始特征权重值向量.然后利用原始特征权重值向量初始化监督学习模型深度神经网络的权重值得到网络攻击类型的预判结果,并通过无监督学习聚类方法Bi-kmeans对网络流量的新特征值向量进行聚类以生成未知攻击类型判别纠正项.最后结合预判结果和未知攻击类型判别纠正项,得到网络攻击类型的最终判定结果.通过和已有研究方法对比,在公开无线网络攻击行为数据集AWID上验证了WiFi-ADOM方法对网络攻击行为检测的优化性能,同时探索了与网络攻击检测相关的重要特征属性的问题.实验结果表明:WiFi-ADOM方法在保证准确率等检测性能的同时能够有效检测未知攻击类型,具备优化网络攻击行为检测的能力. 展开更多
关键词 网络攻击行为检测 网络入侵检测 半监督学习 深度学习 Bi-kmeans聚类
在线阅读 下载PDF
基于多模态神经网络流量特征的网络应用层DDoS攻击检测方法 被引量:6
2
作者 王小宇 贺鸿鹏 +1 位作者 马成龙 陈欢颐 《沈阳农业大学学报》 CAS CSCD 北大核心 2024年第3期354-362,共9页
农业设备、传感器和监控系统与网络的连接日益紧密,给农村配电网带来了新的网络安全挑战。其中,分布式拒绝服务(DDoS)攻击是一种常见的网络威胁,对农村配电网的安全性构成了严重威胁。针对农村配电网的特殊需求,提出一种基于多模态神经... 农业设备、传感器和监控系统与网络的连接日益紧密,给农村配电网带来了新的网络安全挑战。其中,分布式拒绝服务(DDoS)攻击是一种常见的网络威胁,对农村配电网的安全性构成了严重威胁。针对农村配电网的特殊需求,提出一种基于多模态神经网络流量特征的网络应用层DDoS攻击检测方法。通过制定网络应用层流量数据包捕获流程并构建多模态神经网络模型,成功提取并分析了网络应用层DDoS攻击流量的特征。在加载DDoS攻击背景下的异常流量特征后,计算相关系数并设计相应的DDoS攻击检测规则,以实现对DDoS攻击的有效检测。经试验分析,所提出的方法在提取DDoS攻击相关特征上表现出色,最大提取完整度可达95%,效果明显优于对比试验中基于EEMD-LSTM的检测方法和基于条件熵与决策树的检测方法。 展开更多
关键词 农村配电网 流量特征提取 DDOS攻击 网络应用层 多模态神经网络 攻击行为检测
在线阅读 下载PDF
基于归一化处理和TrafficLLM的网络攻击缓解框架
3
作者 成凯 汤卫东 +2 位作者 谈林涛 陈佳 李鑫 《计算机科学》 北大核心 2025年第S1期994-1002,共9页
随着电力配变网络基础设施规模的不断扩大,各类安全二次设备、边缘终端节点和业务系统产生的信息通信流量数据在格式、协议、语义特征层面存在显著差异。主要存在现有缓解框架缺乏多源异构网络异常流量检测数据归一化处理算法,网络攻击... 随着电力配变网络基础设施规模的不断扩大,各类安全二次设备、边缘终端节点和业务系统产生的信息通信流量数据在格式、协议、语义特征层面存在显著差异。主要存在现有缓解框架缺乏多源异构网络异常流量检测数据归一化处理算法,网络攻击行为分析依赖人工特征提取的规则引擎,以及难以确定有效的网络攻击缓解措施等痛点。针对以上痛点,提出了一种基于归一化处理和TrafficLLM的网络攻击缓解框架(Network Attack Mitigation Framework Based on Normalized Processing and TrafficLLM,NAMF-NPTLLM)。该框架涵盖数据解析、归一化处理、模型微调和生成攻击缓解方案4个核心阶段。首先,在特征选择阶段,通过构建集成学习模型,融合多类基学习器的特征评估结果,精准提取对分类结果影响较大的关键特征。其次,将选取的关键特征通过归一化处理,生成统一的自然语言token序列形式表达,为该网络攻击缓解框架的流量异常分析TrafficLLM模型提供标准化输入。然后,对TrafficLLM模型进行微调,使该模型能够理解提示词模板指令并学习攻击行为的流量模式。最后,通过微调后的大模型进行推理,生成攻击缓解指令,使得该框架能够根据攻击行为特征动态调整网络攻击缓解策略。通过在CIC-DDoS2019数据集上进行实验验证,与传统方法相比,该框架将网络攻击行为分类的准确率达到99.80%,提高了1.3%。实验结果表明,该框架对于缓解海量多源异构电力网络终端流量攻击,具有更好的准确性和有效性。 展开更多
关键词 攻击行为检测 数据解析 归一化处理 集成学习模型 网络攻击缓解 参数微调
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部