期刊文献+
共找到206篇文章
< 1 2 11 >
每页显示 20 50 100
基于改进YOLOv5算法的票据检测
1
作者 扈静 贺竞娇 +1 位作者 龚宇 汪俊峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第11期1459-1464,共6页
在票据全流程识别过程中,针对不同类型票据的目标检测是关键步骤,为实现日常报销过程中不同种类票据快速检测其类型和位置,文章提出一种基于改进YOLOv5算法的票据检测方法。对于原始数据集进行预处理,模拟票据检测中可能出现的干扰信息... 在票据全流程识别过程中,针对不同类型票据的目标检测是关键步骤,为实现日常报销过程中不同种类票据快速检测其类型和位置,文章提出一种基于改进YOLOv5算法的票据检测方法。对于原始数据集进行预处理,模拟票据检测中可能出现的干扰信息,提高训练模型的性能;利用CSPDarkNet53网络进行特征提取,采用基于重合面积、中心点距离、长宽比和角度4个几何参数的SIoU目标位置损失函数,对原损失函数进行改进,提升YOLOv5票据检测的精度,构建票据检测方法。最后通过自建实际拍摄的票据数据集来验证基于改进YOLOv5算法的票据检测的有效性。结果表明,该方法拥有较高的平均精度均值(99.20%)和检测速度(51帧/s),可以满足实际应用场景的要求。 展开更多
关键词 票据 目标检测 识别 改进yolov5 损失函数
在线阅读 下载PDF
基于改进YOLOv5算法的水淹电厂检测算法研究 被引量:1
2
作者 张显 吴青盟 +3 位作者 王龙 王成军 崔东辉 张萌 《电子器件》 CAS 2024年第1期221-226,共6页
为能实现对电厂水淹或设备漏水等现象快速、准确的检测与识别,通过利用区域上下文信息补充特征信息,采用改进的多尺度检测部分融合浅层的位置信息,提出了一种基于改进YOLOv5的水淹电厂图像检测算法;此外,针对水淹电厂现象构建一个电厂... 为能实现对电厂水淹或设备漏水等现象快速、准确的检测与识别,通过利用区域上下文信息补充特征信息,采用改进的多尺度检测部分融合浅层的位置信息,提出了一种基于改进YOLOv5的水淹电厂图像检测算法;此外,针对水淹电厂现象构建一个电厂设备的水渍渗漏数据集并使用了数据增强策略;经实验测试表明,算法在检测效果上提升明显,相比于基于原始YOLOv5算法的水淹电厂模型的平均精度均值mAP提升了5.24%,满足了工程实际需求,具有较高的实用性。 展开更多
关键词 水淹电厂 目标检测 深度学习 yolov5算法
在线阅读 下载PDF
基于改进YOLOv5算法的升降机人员不安全行为识别方法 被引量:5
3
作者 余益鸿 周传德 +3 位作者 孟明辉 朱志强 付朝毅 张鑫 《重庆科技学院学报(自然科学版)》 CAS 2022年第2期79-83,98,共6页
为研究施工升降机人员超载、非内部人员闯入等不安全行为,设计了基于深度学习人员数量检测和非内部人员识别的软件系统。通过增大感受野、加深CSP2网络层数、引入形变卷积、Retinex图像增强对YOLOv5检测模型进行优化。对比分析YOLOv3、Y... 为研究施工升降机人员超载、非内部人员闯入等不安全行为,设计了基于深度学习人员数量检测和非内部人员识别的软件系统。通过增大感受野、加深CSP2网络层数、引入形变卷积、Retinex图像增强对YOLOv5检测模型进行优化。对比分析YOLOv3、YOLOv4、YOLOv5、改进YOLOv5算法在不同光照强度下的平均检测准确率和鲁棒性。实验结果显示,改进YOLOv5算法的准确率和鲁棒性有较大幅度提升,其中,超员检测正确率为100%,非内部人员检测正确率为95%。 展开更多
关键词 施工升降机 不安全行为 人员检测 改进yolov5算法
在线阅读 下载PDF
基于改进YOLOv5算法的可回收饮料瓶检测方法研究 被引量:1
4
作者 林一鸣 王宇钢 +1 位作者 季莘翔 徐茁 《辽宁工业大学学报(自然科学版)》 2023年第4期232-238,共7页
针对YOLOv5算法目标检测存在重叠目标漏检率高、检测置信度低的问题,提出基于EA-YOLOv5m模型的可回收饮料瓶检测方法。采用EAM(efficient attention module)注意力模块提升重叠目标检测精度,采用α-IOU Loss函数对损失函数进行改进,提... 针对YOLOv5算法目标检测存在重叠目标漏检率高、检测置信度低的问题,提出基于EA-YOLOv5m模型的可回收饮料瓶检测方法。采用EAM(efficient attention module)注意力模块提升重叠目标检测精度,采用α-IOU Loss函数对损失函数进行改进,提升检测框的定位精度及置信度。实验结果表明,EA-YOLOv5m模型训练的位置损失值和置信度损失值较YOLOv5m模型均有下降,测试的AP_0.5和AP_0.5-0.95较YOLOv5m模型分别提高了0.15%和1.28%,检测速度达到7.8帧/s。针对不同程度遮挡的重叠目标,EA-YOLOv5m模型的检测置信度得到明显提升,分别达到0.81及0.68。该算法可以大幅提升重叠目标检测能力,满足基于视觉的可回收饮料瓶检测应用。 展开更多
关键词 yolov5算法 目标检测 可回收饮料瓶 EAM α-IOU Loss
在线阅读 下载PDF
基于改进YOLOv5算法的复杂场景交通目标检测 被引量:21
5
作者 顾德英 罗聿伦 李文超 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第8期1073-1079,共7页
实时的交通场景目标检测是实现电子监控、自动驾驶等功能的先决条件.针对现有的目标检测算法检测效率不高,以及大多数轻量化目标检测算法模型精度较低,容易误检、漏检目标的问题,本文通过改进YOLOv5目标检测算法来进行模型训练,再使用... 实时的交通场景目标检测是实现电子监控、自动驾驶等功能的先决条件.针对现有的目标检测算法检测效率不高,以及大多数轻量化目标检测算法模型精度较低,容易误检、漏检目标的问题,本文通过改进YOLOv5目标检测算法来进行模型训练,再使用伪标签策略对训练过程进行优化,然后在KITTI交通目标数据集上将标签合并为3类,对训练出的模型进行测试.实验结果表明,改进的YOLOv5最终模型在该所有类别上的mAP达到了92.5%,对比原YOLOv5训练的模型提高了3%.最后将训练的模型部署到Jetson Nano嵌入式平台上进行推理测试,并通过TensorRT加速推理,测得平均每帧图像的推理时间为77 ms,可以实现实时检测的目标. 展开更多
关键词 深度学习 目标检测 yolov5算法 伪标签训练 嵌入式平台
在线阅读 下载PDF
基于改进YOLOv5算法的织物疵点检测系统 被引量:8
6
作者 谢团结 林贤伟 +2 位作者 胡连信 严明华 王泽峰 《棉纺织技术》 CAS 北大核心 2022年第11期15-20,共6页
为了解决织物疵点检测基本靠人工目测、检出效率低的问题,设计基于改进YOLOv5算法的织物疵点检测系统。该系统以YOLOv5算法为基础,通过引入CBAM网络模型,在通道和空间上增强特征图重要信息的表达能力,并直接融合拥有更丰富感受野信息的S... 为了解决织物疵点检测基本靠人工目测、检出效率低的问题,设计基于改进YOLOv5算法的织物疵点检测系统。该系统以YOLOv5算法为基础,通过引入CBAM网络模型,在通道和空间上增强特征图重要信息的表达能力,并直接融合拥有更丰富感受野信息的SPPF特征层,提高对细微疵点的检测精度与检出效率。通过对比试验发现,改进后的算法比原始YOLOv5算法的mAP@0.5值提高了2.1个百分点。认为:该研究提出的算法更适合织物疵点检测,能够满足工业需求。 展开更多
关键词 织物疵点 yolov5算法 深度学习 注意力机制 机器视觉
在线阅读 下载PDF
基于改进YOLOv5算法的珊瑚礁底栖生物识别方法 被引量:13
7
作者 吴睿 毕晓君 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2022年第4期580-586,共7页
现有珊瑚礁底栖生物识别方法存在提取特征困难、实时性较差等问题,导致珊瑚礁底栖生物的识别精度不高。本文引入YOLOv5算法,通过设计跳转连接操作向深层网络传递清晰目标特征,解决了由真实近海图像的退化特性带来的底栖生物特征模糊的... 现有珊瑚礁底栖生物识别方法存在提取特征困难、实时性较差等问题,导致珊瑚礁底栖生物的识别精度不高。本文引入YOLOv5算法,通过设计跳转连接操作向深层网络传递清晰目标特征,解决了由真实近海图像的退化特性带来的底栖生物特征模糊的问题。同时,引入卷积注意力机制模块,解决了无效特征影响识别精度的问题。实验结果表明:本文提出的改进算法无论是识别精度还是识别速度均优于基准算法和目前较先进的单激发多框探测器等算法,从而证明了本文算法的有效性和先进性。 展开更多
关键词 yolov5算法 珊瑚礁生物识别 跳转连接 注意力机制 深度学习 珊瑚礁生态系统 特征金字塔结构 神经网络
在线阅读 下载PDF
基于改进YOLOv5算法的马铃薯表皮缺陷程度检测方法研究 被引量:1
8
作者 田博宇 李存阳 +4 位作者 王孟凡 宋超 郑运昌 乔福宇 夏孟尧 《科学技术创新》 2023年第11期123-126,共4页
马铃薯作为一种产量可观、营养丰富的农作物,已经成为全球不可或缺的食物之一。但恰恰因为其体量庞大的特点在对马铃薯进行分类出售时需要耗费大量的人力和物力以及时间。为了实现对马铃薯品质的自动分类,解放人力物力,提升效率。我们... 马铃薯作为一种产量可观、营养丰富的农作物,已经成为全球不可或缺的食物之一。但恰恰因为其体量庞大的特点在对马铃薯进行分类出售时需要耗费大量的人力和物力以及时间。为了实现对马铃薯品质的自动分类,解放人力物力,提升效率。我们提出了一种基于计算机视觉及改进特征融合YOLOv5s算法的马铃薯表皮缺陷程度检测方法,我们把YOLOv5s的颈部网络中的特征金字塔网络结构替换为加权特征金字塔网络结构,采用这种双向加权特征网络能够更好的提取特征信息,更好的融合特征。并且我们加入了二分K均值聚类算法,该算法的加入极大提升了检测时的收敛速度和精度,并且有效避免了K均值聚类算法因初始聚类点质心选取不适所带来的影响。经过我们的实验表明,本项技术能够对马铃薯表皮检测的正确率达到98%。由此可见,本项基于改进YOLOv5算法的马铃薯表皮缺陷程度检测方法可行性较强,可以用于市场对马铃薯检测分类。 展开更多
关键词 yolov5 马铃薯表皮缺陷检测 改进特征融合 二分K均值聚类算法
在线阅读 下载PDF
基于改进YOLOv5算法的块状磨屑识别方法
9
作者 邵靖男 高春雷 +3 位作者 何国华 张世红 徐济松 王鹏 《铁道建筑》 北大核心 2023年第3期35-39,共5页
针对钢轨打磨车作业产生的块状磨屑的处理方式效率低、智能化程度低、安全隐患大等问题,提出一种基于改进YOLOv5算法的块状磨屑智能识别方法。在原有YOLOv5算法基础上,增加更大尺度的检测层,提升小尺寸块状磨屑的检测效果;在骨干网络嵌... 针对钢轨打磨车作业产生的块状磨屑的处理方式效率低、智能化程度低、安全隐患大等问题,提出一种基于改进YOLOv5算法的块状磨屑智能识别方法。在原有YOLOv5算法基础上,增加更大尺度的检测层,提升小尺寸块状磨屑的检测效果;在骨干网络嵌入卷积注意力模块(Convolutional Block Attention Module,CBAM),增强块状磨屑的特征表达;选择EIoU(Efficient Intersection over Union)替代CIoU(Complete Intersection over Union)作为目标框回归的损失函数,加快模型的收敛速度,提高块状磨屑预测框的精度。利用某轨道巡检小车采集的数据进行测试试验,结果表明:改进后的YOLOv5算法对于块状磨屑的检测能力有所提高,召回率提升了4.55%,均值平均精度提升了8.6%,对小尺寸块状磨屑有更好的检测效果。 展开更多
关键词 高速铁路 计算机视觉技术 yolov5算法 智能识别 块状磨屑 召回率 均值平均精度
在线阅读 下载PDF
基于改进YOLOv5的红花目标检测算法研究
10
作者 陈金荣 许燕 +1 位作者 周建平 王小荣 《农机化研究》 北大核心 2025年第1期26-32,66,共8页
为实现农业非结构环境下采摘机器人对红花的准确识别,提出了一种基于改进YOLOv5的红花目标检测算法。将CBAM注意力机制嵌入到YOLOv5网络,提高了小尺寸目标物在高层次特征中的表现力;建立一种Alpha-IoU目标位置损失函数对原损失函数GIOU... 为实现农业非结构环境下采摘机器人对红花的准确识别,提出了一种基于改进YOLOv5的红花目标检测算法。将CBAM注意力机制嵌入到YOLOv5网络,提高了小尺寸目标物在高层次特征中的表现力;建立一种Alpha-IoU目标位置损失函数对原损失函数GIOU存在的梯度消失问题进行改进,提高了被遮挡红花的预测率,并通过在目标检测网络中增加分割检测模块,提高宽和高小于最低像素的小目标物检测精度,利用图像扩增数据集对改进后的YOLOv5算法进行训练,再分别与改进前后YOLOv5网络和Faster R-CNN网络在不同红花品种、不同自然光照情况、不同天气条件和不同遮挡情况下进行对比。试验结果表明:改进后的YOLOv5算法P值、R值分别为90.45%和0.90,对非结构环境下盛开期的未采摘红花mAP值达到94.48%,在不同影响因素下都可以准确识别出红花且置信度较高,可为红花采摘机器人自动化作业中的红花识别提供技术支持。 展开更多
关键词 红花 目标检测 改进yolov5 数据增强 非结构环境
在线阅读 下载PDF
基于改进YOLOv5算法的智能车灯控制研究
11
作者 郑雅伟 《山西电子技术》 2025年第2期123-126,共4页
针对复杂交通环境下的ADB汽车大灯检测挑战,提出了基于改进YOLOv5算法的解决方案。通过对YOLOv5算法进行优化,融合特征融合、核心网络及视野拓展层等先进技术,实现了对车辆行驶环境的精准检测。实验结果表明,改进后的YOLOv5算法在速度... 针对复杂交通环境下的ADB汽车大灯检测挑战,提出了基于改进YOLOv5算法的解决方案。通过对YOLOv5算法进行优化,融合特征融合、核心网络及视野拓展层等先进技术,实现了对车辆行驶环境的精准检测。实验结果表明,改进后的YOLOv5算法在速度、每秒帧数(FPS)和参数量上均表现出显著优势,检测精度得到大幅提升。同时,结合扩展卡尔曼滤波技术,有效预测了目标车灯光源的轨迹,进一步增强了系统的鲁棒性和实用性。不仅为ADB汽车大灯的环境检测提供了新的思路和方法,也为智能车灯控制系统的未来发展奠定了坚实基础,有助于提升道路行驶的安全性和智能化水平。 展开更多
关键词 改进yolov5算法 ADB汽车大灯 智能车灯控制
在线阅读 下载PDF
基于改进YOLOv5s算法的路况危险检测算法
12
作者 胡文奕 庄新鱼 +2 位作者 黄亚楠 罗锦昊 彭宇暄 《信息技术与信息化》 2025年第2期168-173,共6页
为提高道路安全意识,减少事故风险,文章提出了一种基于改进YOLOv5s算法的路况危险检测算法。改进的YOLOv5s模型即ROD-YOLOv5s。在原来的YOLOv5s模型基础上,首先引入更深的网络结构和压缩和激励网络模块(SE模块)增强特征的提取能力;其次... 为提高道路安全意识,减少事故风险,文章提出了一种基于改进YOLOv5s算法的路况危险检测算法。改进的YOLOv5s模型即ROD-YOLOv5s。在原来的YOLOv5s模型基础上,首先引入更深的网络结构和压缩和激励网络模块(SE模块)增强特征的提取能力;其次,模型使用金字塔注意力网络(PAN)来进一步强化特征的多尺度表达;最后通过使用完整的交并比损失函数(CIoU损失函数)代替传统的IoU损失函数提高了模型的定位精度和泛化能力。所提模型在PASCAL VOC数据集上进行了验证实验,发现ROD-YOLOv5s模型准确率为94%,召回率为91.5%,平均精度均值为94.8%,ROD-YOLOv5s模型与其他算法模型相比在各项指标上均有很大优势,具有很强的鲁棒性。 展开更多
关键词 路况检测 改进yolov5s SE模块 金字塔注意力网络 CIoU损失函数
在线阅读 下载PDF
基于改进YOLOv5s的道路裂缝检测算法 被引量:5
13
作者 任安虎 姜子渊 马晨浩 《激光杂志》 CAS 北大核心 2024年第4期88-94,共7页
为了解决道路巡检系统光学传感器采集的裂缝图像中颜色特征不明显且尺寸不规则造成检测精度不高、泛化能力不足的问题,提出改进YOLOv5s的裂缝检测算法。将结合深度可分离卷积(Depthwise Separable Convolution, DSC)的全局注意力(Global... 为了解决道路巡检系统光学传感器采集的裂缝图像中颜色特征不明显且尺寸不规则造成检测精度不高、泛化能力不足的问题,提出改进YOLOv5s的裂缝检测算法。将结合深度可分离卷积(Depthwise Separable Convolution, DSC)的全局注意力(Global Attention Mechanism, GAM)引入主干特征提取网络,在降低注意力复杂度的同时获得丰富的跨维度特征,增强了裂缝的识别能力;采用空间金字塔软池化网络(Spatial Pyramid Softpool, SPSF),通过Softpool池化保留多维语义以减少信息弥散,提高了边界框回归的准确性;在颈部特征增强网络,运用空洞深度可分离卷积(Atrous DSC)进行下采样,通过扩大感受野加强深层和浅层信息的聚合能力,提高裂缝识别的泛化性。经过在自制道路裂缝数据集上的实验,相较于YOLOv5s,改进算法的mAP提高2.2%,有效提升了道路裂缝检测的准确性和对不同背景下裂缝识别的泛化能力。 展开更多
关键词 道路裂缝检测 yolov5s算法 全局注意力机制 深度可分离卷积 Softpool池化
在线阅读 下载PDF
基于改进YOLOv5的复杂场景电动车头盔检测方法
14
作者 韩东辰 张方晖 +3 位作者 王诗洋 段克盼 李宁星 王凯 《现代电子技术》 北大核心 2025年第1期123-129,共7页
佩戴电动车头盔是安全骑行的重要保障,对电动车驾乘人员佩戴头盔进行有效检测在保障驾乘人员安全方面具有重要意义。电动车头盔检测中存在目标之间相互遮挡、复杂背景干扰、头盔目标小等问题,现有方法尚不能满足复杂场景下电动车头盔检... 佩戴电动车头盔是安全骑行的重要保障,对电动车驾乘人员佩戴头盔进行有效检测在保障驾乘人员安全方面具有重要意义。电动车头盔检测中存在目标之间相互遮挡、复杂背景干扰、头盔目标小等问题,现有方法尚不能满足复杂场景下电动车头盔检测的要求,因此,提出一种改进YOLOv5的复杂场景电动车头盔识别方法。首先,提出一种新的主干网络结构ML-CSPDarknet53,增强网络的特征提取能力,引入轻量级上采样算子CARAFE,利用特征图语义信息扩大感受野;其次,搭建坐标卷积CoordConv模块,增强网络对空间信息的感知能力,并将WIoU v3作为边界框损失函数,降低低质量样本对模型性能的不利影响;最后,构建了内容丰富的头盔检测数据集对改进算法进行验证。实验结果表明,改进后算法相较于原算法在精确度、召回率、mAP@0.5、mAP@0.5:0.95上分别提升了2.9%、3.0%、3.4%和2.2%,并且性能优于其他主流检测算法,满足复杂道路交通场景下电动车驾乘人员头盔检测的任务要求。 展开更多
关键词 头盔检测 改进yolov5 复杂场景 目标遮挡 特征提取 上采样 坐标卷积 损失函数
在线阅读 下载PDF
基于YOLOv5的倾斜视角下轻型红外小目标检测算法
15
作者 张飞 王剑 张岳松 《红外技术》 北大核心 2025年第2期217-225,共9页
针对倾斜视角下的红外行人小目标难以快速准确检测的问题,提出了一种红外行人小目标轻量化实时检测网络模型DRA-YOLO。首先,使用K-means++锚框聚类自适应不同大小尺度目标,从而加快网络收敛并提高检测精度。其次,融入不同注意力机制来... 针对倾斜视角下的红外行人小目标难以快速准确检测的问题,提出了一种红外行人小目标轻量化实时检测网络模型DRA-YOLO。首先,使用K-means++锚框聚类自适应不同大小尺度目标,从而加快网络收敛并提高检测精度。其次,融入不同注意力机制来重新设计特征提取网络,提高特征定位与计算效率,并搭配改进特征金字塔结构提取关键特征和提升模型稳定性。最后,颈部去掉下采样重新搭配SimAM形成新的特征融合结构,并重新设计检测头来适应本文数据集。对比实验显示,相对原始YOLOv5s模型,在自制和公共数据集上表现突出。m AP50达到94.5%,检测速度提高20.8%,模型大小压缩至10.1 MB,降低了30.3%,且GFLOPs下降了29.1%。这些改进实现了对目标的准确快速检测,有效地平衡了模型大小、检测精度和推理速度。 展开更多
关键词 图像处理 行人检测 红外场景 模型优化 yolov5算法
在线阅读 下载PDF
改进Yolov5s的木材表面缺陷实时检测方法
16
作者 荣强 田启川 谭润 《林产工业》 北大核心 2025年第1期64-71,共8页
提出了一种改进Yolov5s的木材缺陷实时检测方法,该方法首先替换了Yolov5s网络中计算量开销占比较大的主干结构,实现了轻量化改进,提升了网络速度。其次,对网络颈部中的C3模块进行双通道注意力机制改进,有效提升了模型对缺陷部位的关注度... 提出了一种改进Yolov5s的木材缺陷实时检测方法,该方法首先替换了Yolov5s网络中计算量开销占比较大的主干结构,实现了轻量化改进,提升了网络速度。其次,对网络颈部中的C3模块进行双通道注意力机制改进,有效提升了模型对缺陷部位的关注度,减少了背景的干扰。成功构建了一种重颈部轻主干的轻量化模型LW-Yolov5。最后,通过构建损失函数,使用双重知识蒸馏策略对新模型进行训练。结果表明:新模型的计算量和参数量分别减少了52.8%和49.5%,CPU推理速度提高了31.6%,检测速度为20.4 FPS,GPU检测速度达到了137 FPS,模型体积仅为7.1 MB,更易于部署,且快速性优于当前主流的单阶段检测网络。在大规模木材缺陷数据集上的平均检测精度mAP为82.5%,检测精度较高。 展开更多
关键词 木材缺陷 缺陷检测 yolov5算法 轻量化网络 知识蒸馏
在线阅读 下载PDF
基于改进Yolov5s的迷彩伪装目标检测
17
作者 杨凡 张洁 《火力与指挥控制》 北大核心 2025年第2期148-155,共8页
伪装目标检测在军事作战中扮演了关键角色,针对现有迷彩伪装目标检测方法精度不高、漏检误检等问题,提出一种改进的Yolov5s算法。在特征提取网络中融合SE注意力,选择性增强目标的关键信息,抑制背景环境的干扰因素。引入SPPFCSPC替换原... 伪装目标检测在军事作战中扮演了关键角色,针对现有迷彩伪装目标检测方法精度不高、漏检误检等问题,提出一种改进的Yolov5s算法。在特征提取网络中融合SE注意力,选择性增强目标的关键信息,抑制背景环境的干扰因素。引入SPPFCSPC替换原池化方式,生成多尺度特征,在加快速度的同时增加检测精度。采用双立方插值取代最近邻插值,以减少上采样过程中丢失的图像细节。实验结果显示,改进的算法在一种公开的迷彩伪装数据集上的mAP、Recall分别达到96.9%和93.8%,较当前研究有显著的提升。 展开更多
关键词 迷彩伪装士兵 目标检测 yolov5s算法 双立方插值
在线阅读 下载PDF
基于改进YOLOv5s算法的禁捕期长江渔船识别及应用研究
18
作者 崔秀芳 王认认 +2 位作者 林浩涛 夏霖波 韩沛霖 《海洋渔业》 CSCD 北大核心 2024年第3期371-380,共10页
长江实行十年禁渔是长江生态环境修复的关键环节,针对禁渔期间长江非法捕捞渔船目标小、背景复杂、流动大等问题,提出了一种基于改进YOLOv5s的目标检测算法。该算法优化多尺度自适应锚框模块,采用改进的K-means++聚类算法,重新匹配适合... 长江实行十年禁渔是长江生态环境修复的关键环节,针对禁渔期间长江非法捕捞渔船目标小、背景复杂、流动大等问题,提出了一种基于改进YOLOv5s的目标检测算法。该算法优化多尺度自适应锚框模块,采用改进的K-means++聚类算法,重新匹配适合长江船舶尺寸的锚框;使用轻量高效的坐标注意力(coordinate attention,CA)机制,提升模型关注目标通道信息特征的能力;采用SPPCSPPC(spatial pyramid pooling and context-aware spatial pyramid pooling combination)对特征图进行池化,提高小目标检测能力;通过构建长江船舶数据集训练得到最优权值模型。结果显示,改进后的模型在准确率、召回率、mAP0.5、mAP0.5∶0.9和原模型相比分别提高了1.5%、3.0%、2.4%、7.7%,且训练过程损失收敛更快,收敛值更低,能够准确快速识别出长江上的渔船目标。研究结果可为长江十年禁渔提供技术支持。 展开更多
关键词 目标检测 yolov5s 聚类算法 注意力机制 空间金字塔池化
在线阅读 下载PDF
基于YOLOv5算法的长江大保护水利工程项目多场景质量安全检测
19
作者 徐亮 陈旭 +1 位作者 张卓 郑向泉 《水利水电科技进展》 北大核心 2025年第2期82-89,共8页
为解决长江大保护水利工程项目施工中质量安全隐患检测效率低、主观性强、易漏检等问题,通过分析项目多场景质量安全检测任务需求,明确了各类质量安全隐患的具体场景,利用YOLOv5算法进行了图像增强优化并搭建了智能识别算法架构,采用现... 为解决长江大保护水利工程项目施工中质量安全隐患检测效率低、主观性强、易漏检等问题,通过分析项目多场景质量安全检测任务需求,明确了各类质量安全隐患的具体场景,利用YOLOv5算法进行了图像增强优化并搭建了智能识别算法架构,采用现场拍摄、网络爬虫技术及项目部内部数据资源,搜集并整理了上千张高质量照片,构建了质量安全图像数据集。在此基础上,通过融入区域检测功能,多场景质量安全检测系统能对指定的作业区域进行精准监测,可以有效地避免误检情况,提升检测效率与准确性。 展开更多
关键词 长江大保护 水利工程项目 质量安全检测 图像增强 多场景 yolov5算法
在线阅读 下载PDF
基于改进YOLOv5s的无人机小目标检测算法研究
20
作者 董华军 王宇栖 《华东交通大学学报》 2024年第4期118-126,共9页
【目的】针对无人机航拍图像中目标尺度多样、背景复杂、小目标密集的特点,提出了基于YOLOv5s的小目标检测算法LM-YOLO。【方法】首先,增加小目标检测头并采用K-DBSCAN聚类算法优化锚框,生成更适合小目标检测的锚框,提高算法对小目标的... 【目的】针对无人机航拍图像中目标尺度多样、背景复杂、小目标密集的特点,提出了基于YOLOv5s的小目标检测算法LM-YOLO。【方法】首先,增加小目标检测头并采用K-DBSCAN聚类算法优化锚框,生成更适合小目标检测的锚框,提高算法对小目标的检测精度;然后,设计更高效的MobileNetV3-CBAM作为特征提取网络,减小网络模型大小;最后,在特征融合网络引入大核选择性注意力机制LSK,增加模型对相似目标的分辨率。【结果】在公开数据集VisDrone2019上的实验结果表明,与基准模型YOLOv5s相比,LM-YOLO对所有目标的平均检测精度提升了7.6%,模型大小压缩了45%。【结论】文章算法可以在降低模型大小的同时保持良好的检测精度。 展开更多
关键词 无人机图像 小目标检测 聚类算法 yolov5s 注意力机制
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部