期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于改进YOLOv4算法的煤矿火灾视频智能识别方法研究 被引量:1
1
作者 王伟峰 李煜 +4 位作者 田丰 张宝宝 何地 李高爽 李卓洋 《中国煤炭》 北大核心 2025年第2期88-95,共8页
随着矿井智能化建设,煤矿火灾风险隐患逐渐增加。针对现有火灾检测算法存在准确率低以及对小火焰识别差的问题,提出一种煤矿火灾视频智能识别方法。该方法以YOLOv4为识别模型,采用群组归一化算法对模型归一化算法进行改进,并利用改进算... 随着矿井智能化建设,煤矿火灾风险隐患逐渐增加。针对现有火灾检测算法存在准确率低以及对小火焰识别差的问题,提出一种煤矿火灾视频智能识别方法。该方法以YOLOv4为识别模型,采用群组归一化算法对模型归一化算法进行改进,并利用改进算法降低模型训练时批量值大小引起的误差;为降低矿井环境对火焰识别造成的火焰边缘信息损失,采用随机池化算法与SPP金字塔算法融合、深度可分离卷积与CSP算法融合,实现对动态演化的火焰进行跨尺度特征提取并融合、避免训练过程中的过拟合现象;为降低光源分布不均对视频火焰识别的影响,在模型中引入动态注意力机制,根据火灾视频识别信息的刺激强弱自动调整感受野大小。将标注后的火灾视频图像数据集输入到F YOLOv4算法模型进行训练及测试。结果表明,改进后的F YOLOv4火灾识别模型的平均检测精度达到97.3%左右,较原始模型提升了7.85%,表明该方法可提高检测速度和精度,可有效提高煤矿火灾识别的准确率。 展开更多
关键词 yolov4 CSP改进 SPP改进 群组归一化 动态注意力机制
在线阅读 下载PDF
基于改进YOLOv4的澳洲坚果视觉监测方法
2
作者 罗鑫 李加强 何超 《中国农机化学报》 北大核心 2024年第5期217-222,共6页
针对大规模澳洲坚果种植园管理困难的问题,提出一种基于改进YOLOv4的林地澳洲坚果生长监测方法。在澳洲坚果种植基地中进行图像采集,记录3种常见的澳洲坚果存在形式,制作VOC数据集并用于模型训练。对样本数量较少的类别进行数据增强,使... 针对大规模澳洲坚果种植园管理困难的问题,提出一种基于改进YOLOv4的林地澳洲坚果生长监测方法。在澳洲坚果种植基地中进行图像采集,记录3种常见的澳洲坚果存在形式,制作VOC数据集并用于模型训练。对样本数量较少的类别进行数据增强,使训练样本均衡分布。在原始YOLOv4方法的基础上进行改进,用DenseNet121网络替换原来的主干网络,并使用Focalloss优化检测模型的分类损失函数,有效提升检测模型精度,同时缓解类别间检测精度不平衡问题。试验结果表明,与YOLOv4、YOLOv3方法相比,所提改进YOLOv4方法对每种澳洲坚果形式的平均精度(AP)均为最高,检测模型的平均精度均值(mAP)达到93.33%,检测速度达到28.7 FPS,实现对林地澳洲坚果落果、病害等生长信息的实时、高效获取,为精确监测澳洲坚果生长状态提供依据。 展开更多
关键词 澳洲坚果 果园监测 深度学习 改进yolov4 目标检测
在线阅读 下载PDF
改进的YOLOv4⁃tiny行人检测算法研究 被引量:10
3
作者 周华平 王京 孙克雷 《无线电通信技术》 2021年第4期474-480,共7页
针对大型行人检测网络由于权重大、检测速度慢等原因无法直接应用到小型设备场景中的问题,提出3种改进YOLOv4⁃tiny的行人检测识别模型:①YOLOv4⁃tinye模型,在CSP(Cross Stage Partial Connections)网络中引入改进的ESA_CSP(Enhanced Spa... 针对大型行人检测网络由于权重大、检测速度慢等原因无法直接应用到小型设备场景中的问题,提出3种改进YOLOv4⁃tiny的行人检测识别模型:①YOLOv4⁃tinye模型,在CSP(Cross Stage Partial Connections)网络中引入改进的ESA_CSP(Enhanced Spatial Attention_CSP)结构,使网络更多关注有利于行人检测的特征信息;②YOLOv4⁃tinyr模型,在主干网络输出后增加多尺度特征融合模块(Ring⁃fenced Bodies,RFBs)结构,增大特征提取的感受野,重复利用特征图的多尺度信息;③同时融合ESA_CSP和RFBs结构的YOLOv4⁃tinyer模型。实验结果表明:3种改进行人检测模型在WiderPerson的验证集上,mAP分别达到了53.62%、53.80%和56.13%,FPS达到了86 ms、75 ms和69 ms。与原YOLOv4⁃tiny模型的行人检测结果(mAP:51.35%,FPS:77 ms)相比,3种模型检测精度分别提高了2.27%、2.45%和4.78%,且速度并未下降太多,依然满足轻量级特点,便于在小型设备上移植。 展开更多
关键词 yolov4tiny 注意力机制 特征融合 感受野
在线阅读 下载PDF
基于改进YOLOv4的园林绿化景观设计探究
4
作者 黄华 《现代园艺》 2024年第12期137-139,共3页
深度学习算法中,YOLOv4在目标识别、检测中已经得到典型应用,其性能出色,但参数量、计算量仍然较高,存在相应的改进空间。为改进目标识别过程中的小目标实时检测,基于改进YOLOv4,生成一种用于园林绿化景观设计场景的轻量级目标检测模型... 深度学习算法中,YOLOv4在目标识别、检测中已经得到典型应用,其性能出色,但参数量、计算量仍然较高,存在相应的改进空间。为改进目标识别过程中的小目标实时检测,基于改进YOLOv4,生成一种用于园林绿化景观设计场景的轻量级目标检测模型,能够利用现场实测数据集、模拟数据集进行训练,以较少精度损失,降低参数、模型的大小,便于在此基础上形成应用于园林绿化景观设计中的目标检测、识别和分类系统。结果表明,改进YOLOv4能够有效提升园林绿化景观设计过程中小目标检测精度,具有良好的泛化性、迁移性,在小目标识别检测方面的准确性与速度获得高度平衡,潜力较大。 展开更多
关键词 改进yolov4 园林绿化景观设计 目标检测 小目标检测
在线阅读 下载PDF
基于MSRCRYOLOv4tiny的田间玉米杂草检测模型 被引量:32
5
作者 刘莫尘 高甜甜 +3 位作者 马宗旭 宋占华 李法德 闫银发 《农业机械学报》 EI CAS CSCD 北大核心 2022年第2期246-255,335,共11页
为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像... 为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision,mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的PruneYOLOv4tiny模型与Faster RCNN、YOLOv3tiny、YOLOv43种常用的目标检测模型进行比较,结果表明:PruneYOLOv4tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3tiny高22.1个百分点和3.6个百分点,比YOLOv4低1.2个百分点;模型占用内存为12.2 MB,是Faster RCNN的3.4%,YOLOv3tiny的36.9%,YOLOv4的5%;在Jetson Nano嵌入式平台上平均检测帧耗时为131 ms,分别是YOLOv3tiny和YOLOv4模型的32.1%和7.6%。可知本文提出的优化方法在模型占用内存、检测耗时和检测精度等方面优于其他常用目标检测算法,能够为硬件资源有限的田间精准除草的系统提供可行的实时杂草识别方法。 展开更多
关键词 杂草识别 yolov4tiny 带色彩恢复的多尺度视网膜增强算法 模型剪枝 嵌入式设备
在线阅读 下载PDF
基于改进YOLOv4算法的轮毂表面缺陷检测 被引量:10
6
作者 吴凤和 崔健新 +3 位作者 张宁 张志良 张会龙 郭保苏 《计量学报》 CSCD 北大核心 2022年第11期1404-1411,共8页
汽车轮毂加工过程中产生的表面缺陷严重影响整车的美观性及服役性能,针对人工检测效率低、漏检率高的问题,提出一种基于改进YOLOv4算法的轮毂表面缺陷检测方法。构建了轮毂缺陷数据集,其包含6种表面缺陷,由2346张4928×3264 pixel... 汽车轮毂加工过程中产生的表面缺陷严重影响整车的美观性及服役性能,针对人工检测效率低、漏检率高的问题,提出一种基于改进YOLOv4算法的轮毂表面缺陷检测方法。构建了轮毂缺陷数据集,其包含6种表面缺陷,由2346张4928×3264 pixel的图像组成;采用K-means方法进行先验框聚类,并针对YOLOv4算法在纤维、粘铝等小尺度缺陷上检测精度不足问题,在原网络Neck部分引入细化U型网络模块(TUM)和注意力机制,用于增强有效特征并抑制无效特征,强化多尺度特征提取与融合,改善特征处理过程中可能存在的小目标信息丢失问题;基于该数据集,训练并测试不同算法的缺陷检测性能并验证改进模块的有效性。结果表明,该方法大幅提升了粘铝等小尺寸缺陷的检测能力,缺陷检测平均精度达到85.8%,与多种算法相比较检测精度最高。 展开更多
关键词 计量学 轮毂 缺陷检测 改进yolov4算法 细化U型网络
在线阅读 下载PDF
基于改进YOLOv4的灾后人员检测算法 被引量:1
7
作者 张立国 李佳庆 +2 位作者 赵嘉士 耿星硕 章玉鹏 《高技术通讯》 CAS 2023年第7期742-749,共8页
针对地震等灾后环境复杂、救援机器人对救援目标识别实时性和准确度要求较高的问题,提出一种基于改进YOLOv4的目标检测模型。该算法将YOLOv4网络中的主干特征提取网络替换成MobileNetv1模型以增强特征复用,同时缩减网络参数量,提高运行... 针对地震等灾后环境复杂、救援机器人对救援目标识别实时性和准确度要求较高的问题,提出一种基于改进YOLOv4的目标检测模型。该算法将YOLOv4网络中的主干特征提取网络替换成MobileNetv1模型以增强特征复用,同时缩减网络参数量,提高运行速度;通过K-means++算法进行锚点维度聚类以适应灾后人员检测,提升算法精度。并且针对灾后人员检测数据集缺乏问题,贡献相应的数据集。实验结果表明,改进的网络与YOLOv4相比在保证模型精度的前提下帧率提升了约92%,权重文件大小变为原来的20.73%,满足了灾后救援机器人目标检测实时性和准确性的需求,对于灾后人员检测场景有一定的借鉴意义。 展开更多
关键词 灾后救援 目标检测 改进yolov4 Mobilenetv1 K-means++
在线阅读 下载PDF
基于改进YOLOv4的果园柑橘检测方法研究 被引量:9
8
作者 陈文康 陆声链 +3 位作者 刘冰浩 李帼 刘晓宇 陈明 《广西师范大学学报(自然科学版)》 CAS 北大核心 2021年第5期134-146,共13页
水果的自动检测是自动采摘、果园喷药、采后分拣等农业应用中的关键技术。针对果园环境中柑橘目标小、噪声多、遮挡严重等问题,本文基于YOLOv4算法提出一种改进的适用于果园环境的柑橘快速识别方法。主要改进措施包括:一是在训练阶段利... 水果的自动检测是自动采摘、果园喷药、采后分拣等农业应用中的关键技术。针对果园环境中柑橘目标小、噪声多、遮挡严重等问题,本文基于YOLOv4算法提出一种改进的适用于果园环境的柑橘快速识别方法。主要改进措施包括:一是在训练阶段利用Canopy算法和K-Means++算法自动选择先验框的数目和大小;二是在YOLOv4网络中每个不同尺度特征的输出层前增加一个调整层,并采用残差网络结构和密集连接网络相结合,同时修改回归框损失函数,以便检测复杂背景下的小柑橘;三是在保证不造成较大检测精度损失的前提下,对网络中不重要的通道和网络层进行剪枝。与目前常用的YOLOv4、MLKP和Cascade R-CNN等3种目标检测算法的对比实验结果表明,本文改进的YOLOv4算法对果园环境下不同生长期柑橘的检测平均准确率达96.04%,平均检测速度为每张图像0.06 s,均优于对比的3种主流目标检测算法。本文提出的方法可为自然条件下果园中柑橘的采摘、产量评估等应用提供技术和方法指导。 展开更多
关键词 柑橘识别 小目标检测 深度学习 改进yolov4 卷积神经网络
在线阅读 下载PDF
基于改进YOLOv4算法的无人机目标检测 被引量:7
9
作者 祁江鑫 吴玲 +2 位作者 卢发兴 史浩然 许俊飞 《兵器装备工程学报》 CSCD 北大核心 2022年第6期210-217,共8页
为了提高无人机集群检测精度和速度,提出了改进YOLOv4无人机集群目标检测方法。使用轻量化网络MobileNetV3分别获得5个有效特征层代替原网络中主特征提取网络生成的有效特征层,降低原网络的参数量和计算量;采用改进的K-means优化聚类先... 为了提高无人机集群检测精度和速度,提出了改进YOLOv4无人机集群目标检测方法。使用轻量化网络MobileNetV3分别获得5个有效特征层代替原网络中主特征提取网络生成的有效特征层,降低原网络的参数量和计算量;采用改进的K-means优化聚类先验框替代原算法中的先验框;基于公共数据集验证算法的有效性,在单无人机和无人机集群2种情况下进行了检测实验。实验结果表明:使用轻量化网络并利用改进K-means优化聚类先验框的改进YOLOv4算法,相比传统YOLOv3和YOLOv4算法明显提升无人机检测精度和检测速度,检测精度比YOLOv3和YOLOv4分别提高了16.4%、7.3%,检测速率分别提高0.82倍、1.27倍,漏检率分别降低了68.5%、6.25%,误检率分别降低了69.8%、62.2%,有效解决了误检和漏检等问题;与其他深度学习算法SSD和Centernet相比,检测精度分别提高15.4%、19.4%,检测速率分别提高了16.4%、52.1%。 展开更多
关键词 深度学习 轻量化网络 无人机 集群检测 改进yolov4 改进K-MEANS
在线阅读 下载PDF
基于改进YOLOv4的红外行人车辆检测算法 被引量:6
10
作者 郭志坚 李江勇 +1 位作者 祁海军 赵金博 《激光与红外》 CAS CSCD 北大核心 2023年第4期607-614,共8页
智能设备对行人和车辆的目标检测对于建设智慧城市有着重要的意义。随着红外技术的发展和普及,红外成像科技具有强抗干扰和全天候的特性,被越来越多地用于解决可见光受限环境带来的问题。论文提出了一种改进YOLOv4深度学习算法对红外图... 智能设备对行人和车辆的目标检测对于建设智慧城市有着重要的意义。随着红外技术的发展和普及,红外成像科技具有强抗干扰和全天候的特性,被越来越多地用于解决可见光受限环境带来的问题。论文提出了一种改进YOLOv4深度学习算法对红外图像下的行人车辆进行检测。改进的YOLOv4算法加入了CA注意力机制模块,将位置信息嵌入到通道注意中,增强了对感兴趣区域的表示。此外还设计了CSP2-DBL模块,替换了原本简单的卷积模块叠加,对高分辨率特征性信息的做出了弥补。为了进一步提高网络计算速度,减少计算量,针对红外图像特性,对Head部分进行了裁剪。实验结果表明改进后的模型在FLIR红外数据集上较YOLOv4模型在mAP上提高了0.85个百分点,检测速度提升了2 f/s。 展开更多
关键词 智慧城市 目标检测 红外图像 改进yolov4 行人车辆
在线阅读 下载PDF
改进YOLOv4算法的安全帽检测 被引量:6
11
作者 李帅 李丽宏 +2 位作者 王素刚 田建艳 李济甫 《现代电子技术》 2022年第3期103-110,共8页
传统的人工巡检和查看监控检测安全帽佩戴的方法容易造成漏检、误检,因此提出一种基于改进YOLOv4算法的安全帽检测方法。首先,采用百度AI Studio平台的公开安全帽数据集和网络爬虫收集数据,自制安全帽佩戴情况数据集;再使用Mosaci、图... 传统的人工巡检和查看监控检测安全帽佩戴的方法容易造成漏检、误检,因此提出一种基于改进YOLOv4算法的安全帽检测方法。首先,采用百度AI Studio平台的公开安全帽数据集和网络爬虫收集数据,自制安全帽佩戴情况数据集;再使用Mosaci、图像翻转等多种数据增强算法丰富图像信息;引入K⁃means聚类更新锚框尺寸,空洞卷积扩大感受野和标签平滑防止模型过拟合,以提升中小物体检测性能。经实验验证,改进版YOLOv4算法较原始YOLOv4算法mAP提升了1.77%;与Faster RCNN相比mAP提升了4.13%,小物体目标检测效果mAP提升了12.71%,检测速度提升20倍。实例结果显示,改进版YOLOv4算法无漏检、误检情况,可准确检测出未佩戴安全帽的人员,有效减少了安全隐患。 展开更多
关键词 安全帽佩戴检测 改进yolov4算法 锚框尺寸更新 感受野 标签平滑 实验分析
在线阅读 下载PDF
基于背景数据增强和改进YOLOv4的断路器试验机器人接线定位方法 被引量:1
12
作者 何胜红 吴小平 +1 位作者 王俊波 张殷 《电力科学与技术学报》 CAS CSCD 北大核心 2023年第2期196-204,239,共10页
为提高断路器试验机器人接线的准确性和可靠性,以双目视觉和深度学习目标检测技术为基础,提出一种基于背景数据增强和改进YOLOv4的断路器试验机器人接线定位方法。该方法利用本文提出的背景混合剪切的数据增强方法,解决因断路器训练图... 为提高断路器试验机器人接线的准确性和可靠性,以双目视觉和深度学习目标检测技术为基础,提出一种基于背景数据增强和改进YOLOv4的断路器试验机器人接线定位方法。该方法利用本文提出的背景混合剪切的数据增强方法,解决因断路器训练图像背景特征不足而导致所训练的目标检测模型泛化能力和准确率低的问题,可以极大地提高不同试验场所(背景)和人员走动等背景扰动下机器人接线的准确性和可靠性;将标准YOLOv4的特征网络CSPDarknet-53替换为Mobiledets,可以优化目标检测模型的推理时间,提高机器人接线效率。仿真结果表明,本文方法的准确率为99.9%;实测结果表明,接线准确率为98.8%,全项目试验接线时间减少了57 s。通过对比分析,本文方法在接线准确率和时间上优于其他方法,可为断路器机器人试验平台的实用化提供技术支持。 展开更多
关键词 断路器试验 机器人接线 视觉定位 背景数据增强 改进yolov4
在线阅读 下载PDF
基于改进YOLOv4的降雨天气下番茄目标与抓取位置检测 被引量:1
13
作者 赵赫 李卫国 杨止谦 《江苏农业科学》 北大核心 2023年第1期202-210,共9页
针对采摘机器人在降雨天气背景下的成熟番茄识别和抓取位置标定问题,提出了雨纹渲染数据增强方法、一种改进型YOLOv4模型和简化两点式抓取表达法。为了在满足精度的前提下减少模型参数量,使用多个bneck结构组成的轻量化特征提取网络代替... 针对采摘机器人在降雨天气背景下的成熟番茄识别和抓取位置标定问题,提出了雨纹渲染数据增强方法、一种改进型YOLOv4模型和简化两点式抓取表达法。为了在满足精度的前提下减少模型参数量,使用多个bneck结构组成的轻量化特征提取网络代替原YOLOv4模型的主干网络,并将原模型中所有的标准卷积替换成深度可分离卷积。为了提高模型对于降雨的鲁棒性,采用在清晰图片上随机渲染3种角度和密度的雨纹的数据增强方法。因为番茄成熟果实的形状特殊性,简化了两点式抓取表达法,在模型生成预测框的同时生成参考抓取点及抓取轨迹。试验结果表明,雨纹渲染数据增强方法能够有效提高模型对于降雨天气的鲁棒性,改进后的模型较原模型在参数量减少的同时识别性能有所上升,参考抓取点及抓取轨迹预测合理,证明了本研究提出的数据增强办法、识别模型及抓取表达法可以为采摘机器人的视觉系统提供有利保障。 展开更多
关键词 采摘机器人 番茄识别 深度学习 改进yolov4 数据增强 抓取点 抓取轨迹
在线阅读 下载PDF
复杂场景下基于改进YOLOv4的小型舰船目标检测 被引量:1
14
作者 吴维林 方健 +2 位作者 屈毅 张宁 高洁 《传感器与微系统》 CSCD 北大核心 2023年第12期119-122,共4页
针对日益复杂的海洋环境对舰船目标检测更高识别率、实时性、智能化的需求,提出了一种基于改进YOLOv4的舰船目标检测算法。算法将新设计的多层特征融合(MFF)模块和多层接收域块(M-RFB)模块集成到YOLOv4的颈部,改进了网络特征提取的能力... 针对日益复杂的海洋环境对舰船目标检测更高识别率、实时性、智能化的需求,提出了一种基于改进YOLOv4的舰船目标检测算法。算法将新设计的多层特征融合(MFF)模块和多层接收域块(M-RFB)模块集成到YOLOv4的颈部,改进了网络特征提取的能力,解决了海洋环境中小型舰船的检测和分类问题,模型训练过程中引入迁移学习的策略防止模型过拟合并加速模型训练的参数。实验结果表明:该算法能有效解决小型舰船在复杂海洋环境下检测困难、识别率低的问题。与现有算法相比,该算法能够在复杂的海洋导航条件下获得更高的精度,特别是与YOLOv4相比,准确率提高了约11%。 展开更多
关键词 舰船目标检测 改进yolov4 多层特征融合 多层接收域块
在线阅读 下载PDF
基于改进YOLOv4风机叶片缺陷检测方法 被引量:4
15
作者 高文俊 张海峰 《农业装备与车辆工程》 2023年第8期94-98,共5页
随着风电行业发展,风电设备越来越普及。风力发电设备长期处于恶劣环境下,设备叶片关键部件会发生损伤,降低整机发电效率。为了解决风力发电机叶片传统检测耗时长、效率低、精度低等问题,提出一种基于改进YOLOv4的风机叶片缺陷检测方法... 随着风电行业发展,风电设备越来越普及。风力发电设备长期处于恶劣环境下,设备叶片关键部件会发生损伤,降低整机发电效率。为了解决风力发电机叶片传统检测耗时长、效率低、精度低等问题,提出一种基于改进YOLOv4的风机叶片缺陷检测方法。首先采用GhostNet特征提取网络更换原有YOLOv4的特征提取网络,使得模型轻量化的同时保持良好的检测精度;其次,采用基于COCO数据集权重的迁移学习,减少模型训练时间并加快模型收敛;最后,采用Focal loss分类损失函数解决数据集缺陷类别不平衡问题,且使得目标检测模型收敛。实验结果表明,相比原有的YOLOv4,map值提高了3.66%且能满足实时性需求。 展开更多
关键词 改进yolov4 风机叶片 缺陷检测 特征提取
在线阅读 下载PDF
基于YOLOv4⁃tiny模型的细胞图像识别技术研究
16
作者 柴媛媛 《现代电子技术》 2022年第9期46-49,共4页
根据细胞的形态特征进行病理分析是现代医疗健康领域常用的技术手段,传统的细胞识别及分类存在易疲劳、效率低、医师水平及主观因素带来的不确定性等问题。为此,提出基于YOLOv4⁃tiny模型的细胞图像识别技术。在Jetson Nano人工智能平台... 根据细胞的形态特征进行病理分析是现代医疗健康领域常用的技术手段,传统的细胞识别及分类存在易疲劳、效率低、医师水平及主观因素带来的不确定性等问题。为此,提出基于YOLOv4⁃tiny模型的细胞图像识别技术。在Jetson Nano人工智能平台上设计开发了面向细胞的智能检测系统,通过加入Dropout改进了YOLOv4⁃tiny轻量化网络模型,有效防止了训练数据过度拟合的问题,实现了基于细胞形状特征的精准识别。实验结果表明,该系统的细胞检测准确率可高达99%,能够大幅提高细胞在显微镜下的检测精度及检测效率,促进了人工智能技术在医学检测领域的应用。 展开更多
关键词 细胞图像识别 yolov4tiny模型 智能检测 目标识别 网络模型改进 病理分析
在线阅读 下载PDF
面向密集型钢筋计数的GCA-MobilenetV2-YOLOv4算法 被引量:3
17
作者 刘浩 辛山 《电子测量技术》 北大核心 2023年第9期166-174,共9页
为提高建筑工地的钢筋计数效率,围绕施工单位硬件设备算力不足,钢筋图像物体密集遮挡严重的情况,提出一种改进的轻量化YOLOv4算法。提出GCA-MobilenetV2轻量级网络替换CSPDarknet53,作为YOLOv4算法的主干特征网络。针对钢筋图像密集,物... 为提高建筑工地的钢筋计数效率,围绕施工单位硬件设备算力不足,钢筋图像物体密集遮挡严重的情况,提出一种改进的轻量化YOLOv4算法。提出GCA-MobilenetV2轻量级网络替换CSPDarknet53,作为YOLOv4算法的主干特征网络。针对钢筋图像密集,物体间遮挡严重的情况,提出融合通道注意力机制的attention-CSP-PANet结构。针对深层网络SPP结构参数量大,模型训练时梯度消失的问题,提出DepthLite-SPP结构,增强深层网络的感受野,提高算法的检测速度。针对一阶段回归的算法正负样本失衡问题,设计CIOU-Focal损失函数。实验证明,在自建钢筋数据集中检测精度为98.78%,对比原算法精度提升了3.36%,检测速度FPS提升了7.6,参数量仅为原算法的1/3。 展开更多
关键词 钢筋计数 yolov4算法改进 GCA-MobilenetV2网络 attention-CSP-PANet结构 DepthLite-SPP结构
在线阅读 下载PDF
基于红外相机和毫米波雷达融合的烟雾遮挡无人驾驶车辆目标检测与跟踪 被引量:9
18
作者 熊光明 罗震 +3 位作者 孙冬 陶俊峰 唐泽月 吴超 《兵工学报》 EI CAS CSCD 北大核心 2024年第3期893-906,共14页
战场环境下无人驾驶车辆的感知系统易受烟雾、扬尘等天气的影响,对关键目标的检测与跟踪能力大大下降,造成目标漏检、目标误检、目标丢失等严重后果。针对该问题,开发毫米波雷达和红外相机融合系统,采用目标级融合方式建立简洁有效的融... 战场环境下无人驾驶车辆的感知系统易受烟雾、扬尘等天气的影响,对关键目标的检测与跟踪能力大大下降,造成目标漏检、目标误检、目标丢失等严重后果。针对该问题,开发毫米波雷达和红外相机融合系统,采用目标级融合方式建立简洁有效的融合规则,提炼和组合各传感器的优势信息,最终输出稳定的目标感知结果。对毫米波雷达的目标进行有效性检验和提取,并提出改进的基于密度的含噪声空间聚类应用算法,以减少毫米波雷达噪音干扰。以YOLOv4网络为基础,引入MobileNetv2主干网络,在网络训练过程中运用迁移学习方法,同时对红外数据样本进行扩充,解决了红外图像训练样本少的问题。试验结果表明,相较于仅基于红外相机的算法,融合检测算法在烟雾环境下的精度显著提升,且算法实时性高,实现了烟雾环境下毫米波雷达与红外相机融合的目标检测与跟踪,提高了无人驾驶车辆目标检测与跟踪系统的抗烟雾干扰能力。 展开更多
关键词 无人驾驶车辆 烟雾遮挡 红外相机 毫米波雷达 目标检测 目标跟踪 改进yolov4网络
在线阅读 下载PDF
车载手部小目标运动跟踪算法研究 被引量:3
19
作者 王金磊 魏同权 +2 位作者 邓亮 谢正华 陈万刚 《传感器与微系统》 CSCD 北大核心 2023年第8期65-68,77,共5页
随着汽车座舱的发展,通过对车内乘客手部进行运动跟踪,实现与车内灯具交互的应用成为了市场热点需求。但手部小目标易漏检的问题会造成目标缺失与跟踪不连续。提出一种车载手部小目标运动跟踪算法。首先,改进了YOLOv4-Tiny目标检测算法... 随着汽车座舱的发展,通过对车内乘客手部进行运动跟踪,实现与车内灯具交互的应用成为了市场热点需求。但手部小目标易漏检的问题会造成目标缺失与跟踪不连续。提出一种车载手部小目标运动跟踪算法。首先,改进了YOLOv4-Tiny目标检测算法,通过将特征融合层的浅层特征进行多次卷积和下采样,并与深层特征拼接,使深层获得更多的细节特征信息;然后,将检测结果传入DeepSORT算法进行多目标跟踪,实现对手部的运动跟踪。在嵌入式平台实验结果表明:改进后YOLOv4-Tiny算法的召回率提升9.05%;本文算法相比传统算法,多目标跟踪准确度(MOTA)提升17%,精度(MOTP)提升15%,同时具有较高的实时性。 展开更多
关键词 汽车座舱小目标检测 改进yolov4—tiny 特征融合 DeepSORT算法 多目标跟踪
在线阅读 下载PDF
复杂野外环境下油茶果快速鲁棒检测算法 被引量:1
20
作者 周浩 唐昀超 +3 位作者 邹湘军 王红军 陈明猷 黄钊丰 《现代电子技术》 2022年第15期73-79,共7页
为了提高移动采摘机器人在复杂野外环境下检测油茶果的速度和鲁棒性,在YOLOv4⁃tiny网络的基础上提出YOLO⁃Oleifera网络。首先将两个1×1和3×3的卷积核分别添加至YOLOv4⁃tiny网络的第2个和第3个CSPBlock模块之后,以有助于学习... 为了提高移动采摘机器人在复杂野外环境下检测油茶果的速度和鲁棒性,在YOLOv4⁃tiny网络的基础上提出YOLO⁃Oleifera网络。首先将两个1×1和3×3的卷积核分别添加至YOLOv4⁃tiny网络的第2个和第3个CSPBlock模块之后,以有助于学习油茶果的特征信息和减少计算复杂度;接着使用K⁃means++先验框聚类算法代替YOLOv4⁃tiny网络使用的K⁃means先验框聚类算法,以获得满足油茶果尺寸的聚类结果。消融实验证明了网络改进的有效性。分别测试光照和阴影环境下的油茶果图像,实验表明YOLO⁃Oleifera网络在不同光照条件下检测油茶果具有鲁棒性。此外,对比实验表明被遮挡的油茶果因为语义信息的缺失而导致Precision和Recall降低。将YOLO⁃Oleifera网络的测试结果与YOLOv5⁃s、YOLOv3⁃tiny和YOLOv4⁃tiny网络进行比较,结果显示YOLO⁃Oleifera网络的AP最高,而且YOLO⁃Oleifera网络占用硬件资源最小。此外,YOLO⁃Oleifera网络检测图像平均花费31 ms,能够满足移动采摘机器人的实时检测需求。因此,提出的YOLO⁃Oleifera网络更加适合搭载在移动采摘机器人上进行检测任务。 展开更多
关键词 目标检测 yolov4tiny网络 深度学习 卷积核 采摘机器人 K⁃means++ 鲁棒性
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部