期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
基于IHHO-Stacking集成模型的车辆驾驶性评估
1
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 stacking 集成模型 客观评价
在线阅读 下载PDF
基于Stacking集成学习的隧道突水危险预测模型
2
作者 卢佳乐 张念 +1 位作者 牛萌萌 万飞 《中国安全科学学报》 北大核心 2025年第4期137-144,共8页
为解决机器学习在隧道突水危险智能预测领域存在的模型较单一和预测精度不够理想等问题,提出一种基于Stacking集成学习方法的预测模型。首先,通过搜集95条隧道共计232组隧道突水灾害数据建立隧道突水灾害数据集,并进行数据预处理;然后,... 为解决机器学习在隧道突水危险智能预测领域存在的模型较单一和预测精度不够理想等问题,提出一种基于Stacking集成学习方法的预测模型。首先,通过搜集95条隧道共计232组隧道突水灾害数据建立隧道突水灾害数据集,并进行数据预处理;然后,选取3种基学习器和2种元学习器以不同组合方式训练出8组Stacking集成模型,并筛选出6组较优的集成模型;最后,使用网格搜索调参并结合5折交叉验证超参数调优模型,对比分析6组参数调优后的Stacking集成模型的预测结果,选择出最优Stacking集成模型。结果表明:采用Stacking集成学习方法改进最优单模型支持向量机(SVM)后得到SVM+朴素贝叶斯(NB)+线性回归(LR)集成模型,其精确率、召回率和F_(1)分数分别达到0.94、0.91和0.92,整体预测效果优于其他对比模型,可准确预测隧道突水危险等级。 展开更多
关键词 stacking集成学习 隧道突水 预测模型 危险等级 机器学习
在线阅读 下载PDF
激光诱导击穿光谱技术结合Stacking集成算法模型快速预测废钢中9种元素的含量
3
作者 刘艳丽 安治国 +3 位作者 刘洁 石玉龙 黄晓红 宋超 《理化检验(化学分册)》 北大核心 2025年第4期412-418,共7页
基于激光诱导击穿光谱技术,结合Stacking集成算法模型,建立了废钢中铬、镍、铜、硅、锰、钒、碳、钛、铝等9种元素的定量分析模型。采用便携激光诱导击穿光谱仪对12个合金钢标准样品进行采集,对光谱数据进行剔除误差、平均、基线校正后... 基于激光诱导击穿光谱技术,结合Stacking集成算法模型,建立了废钢中铬、镍、铜、硅、锰、钒、碳、钛、铝等9种元素的定量分析模型。采用便携激光诱导击穿光谱仪对12个合金钢标准样品进行采集,对光谱数据进行剔除误差、平均、基线校正后,基于美国国家标准与技术研究院谱线数据库筛选出各元素和基体元素(铁元素)的谱线,利用相关性程度对各元素谱线和归一化线进行最优化匹配,得到各元素的最优归一化谱线对。以最优谱线对归一化后的谱线数据作为各元素模型的输入,将Lasso、岭回归和二次线性回归模型的输出合并,作为次学习器的输入,将元素认定值作为次学习器的输出,次学习器选用线性回归模型进行训练建模,最终得到各元素的Stacking集成算法模型。结果显示:9种元素模型的相关决定系数为0.985 6~0.999 7,均方根误差为0.008 1~0.046 8,平均绝对误差为0.006 0~0.034 5;元素测定值的相对标准偏差(n=5)均小于7.0%;模型用于预测合金钢标准样品,测定值与认定值相对误差的绝对值小于10%。 展开更多
关键词 激光诱导击穿光谱 stacking集成算法 定量分析模型 废钢 元素
在线阅读 下载PDF
基于Stacking集成学习的空管危险源数据分类
4
作者 王洁宁 闫思卿 孙禾 《科学技术与工程》 北大核心 2025年第20期8583-8594,共12页
在现代空管系统中,高效准确地识别和分类危险源文本数据对于保障飞行安全至关重要,空管危险源数据指的是那些可能影响航空安全的潜在因素、条件或事件的信息集合,然而现有的文本分类方法难以应对数据类别多样性和类别不平衡问题。当下... 在现代空管系统中,高效准确地识别和分类危险源文本数据对于保障飞行安全至关重要,空管危险源数据指的是那些可能影响航空安全的潜在因素、条件或事件的信息集合,然而现有的文本分类方法难以应对数据类别多样性和类别不平衡问题。当下迫切需要开发适用于空管系统的高效分类方法,以提高飞行安全水平。针对单一学习器用于空管危险源文本分类存在的类别分布较多,难以捕捉类别数据不平衡时的文本特征导致预测精度下降的问题,提出基于Stacking训练思想的、两次加权的改进集成模型。首先,参考双防机制对危险源和安全隐患完成类别划分;再采用词频-逆文档频率(term frequency-inverse document frequency, TF-IDF)算法提取预处理后的危险源文本特征完成向量化,并利用合成少数类过采样技术(synthetic minority over-sampling technique, SMOTE)和自适应合成过采样算法(adaptive synthetic sampling approach, ADASYN)分别随机生成向量化后的少数类文本,使文本数据集的类别分布趋于平衡;再从基学习器每折交叉验证的F1分数加权和基学习器之间敏感性评估机制动态加权两方面改进Stacking集成模型,提高类别不平衡危险源文本的分类性能。在所构建的数据集上的实验结果表明:相较于SMOTE+改进集成模型,ADASYN+改进集成模型的精确率、召回率和F1分数分别提升0.9、1.1和1.0个百分点,较好地抑制处理多数类别过拟合的问题,实验结果验证了所提算法的有效性。 展开更多
关键词 双防机制 空管危险源 文本分类 自适应合成过采样算法(ADASYN) stacking集成模型
在线阅读 下载PDF
基于Stacking集成学习的热轧带钢凸度诊断模型 被引量:1
5
作者 张殿华 李贺 +3 位作者 武文腾 霍光帆 孙杰 彭文 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第10期3673-3682,共10页
在热连轧生产过程中,凸度是重要的质量指标,过程数据的非平衡性限制了数据驱动模型的预测效果,为提高模型的预测精度,提出一种融合SMOTE和Stacking集成算法的热轧带钢凸度诊断模型。首先,采用SMOTE过采样方法处理凸度相关数据集,降低数... 在热连轧生产过程中,凸度是重要的质量指标,过程数据的非平衡性限制了数据驱动模型的预测效果,为提高模型的预测精度,提出一种融合SMOTE和Stacking集成算法的热轧带钢凸度诊断模型。首先,采用SMOTE过采样方法处理凸度相关数据集,降低数据非平衡分布导致的影响;然后,构建以轻量级梯度提升机(LightGBM)、支持向量机(SVM)、K近邻(KNN)和随机森林(RF)为基学习器,逻辑回归(LR)为元学习器的Stacking集成模型,最后,使用某2160 mm热轧带钢实际生产数据进行模型验证。研究结果表明,诊断模型的准确率、少数类召回率、平衡F分数、几何平均值和ROC曲线下面积分别为0.9580、0.9595、0.9573、0.9589和0.9579,与XGBoost、LightGBM、KNN、SVM和随机森林模型对比,预测效果最优,证明了Stacking集成算法能够有效增强诊断模型的泛化能力,具有优良的诊断性能。 展开更多
关键词 带钢凸度诊断 stacking集成模型 非平衡数据 SMOTE
在线阅读 下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型 被引量:1
6
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 模型 stacking融合
在线阅读 下载PDF
坝基灌浆量预测ISSA-Stacking集成学习代理模型研究 被引量:6
7
作者 祝玉珊 王晓玲 +3 位作者 崔博 陈文龙 轩昕祺 余红玲 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第2期174-185,共12页
灌浆量预测对坝基灌浆施工具有重要意义.由于灌浆工程隐蔽且复杂,传统方法难以实现准确高效的灌浆量预测.代理模型是一种能够建立影响因素与响应值之间近似关系的快速求解方法,然而单一代理模型的预测稳定性和准确性较低,组合代理模型... 灌浆量预测对坝基灌浆施工具有重要意义.由于灌浆工程隐蔽且复杂,传统方法难以实现准确高效的灌浆量预测.代理模型是一种能够建立影响因素与响应值之间近似关系的快速求解方法,然而单一代理模型的预测稳定性和准确性较低,组合代理模型仅将单一模型结果进行加权平均,预测精度仍有待提高.为解决上述问题,本文提出一种ISSA-Stacking集成学习代理模型新方法用于灌浆量预测研究.首先,针对灌浆量预测具有数据量小、影响因素与灌浆量之间非线性关系复杂且预测不确定性较大等特性,基于Stacking集成学习策略,选取在小样本预测中表现优越的支持向量回归(SVR)、具有良好非线性拟合能力的BP神经网络(BPNN)和预测泛化性能及稳定性高的随机森林(RF)等算法作为基学习器,采用自适应学习和不确定性处理能力强的自适应神经模糊推理系统(ANFIS)作为元学习器以集成上述机器学习算法的优势,构建具有更优预测性能和泛化能力的Stacking集成学习方法作为代理模型;其次,为进一步提高模型预测精度,采用混沌理论和Lévy飞行策略改进的麻雀搜索算法(ISSA)对集成学习代理模型进行参数同步优化;最后,将所提ISSA-Stacking集成学习代理模型应用于某实际灌浆工程的灌浆量预测并与其他方法进行对比分析.结果表明,所提方法具有较高的预测精度,绝对平均误差仅为0.21 m^(3);与组合代理模型及单一代理模型(SVR、BPNN和RF)相比,平均精度分别提高24.34%、30.84%、32.68%和26.56%,为灌浆量预测提供了一种新思路. 展开更多
关键词 灌浆量预测 stacking集成学习方法 代理模型 麻雀搜索算法
在线阅读 下载PDF
基于树结构Parzen估计器优化后两层Stacking模型的岩石脆性指数预测
8
作者 王芷含 温韬 《中国石油勘探》 北大核心 2025年第2期115-132,共18页
目前岩石脆性指数的评价方法众多,主要基于矿物组分或岩石力学性质开展评价,但多数评价指标获取费用高昂、耗时长。采用机器学习的手段,提出一种基于Stacking集成学习思想的岩石脆性指数预测方法,并行训练梯度提升决策树模型(GBDT)、随... 目前岩石脆性指数的评价方法众多,主要基于矿物组分或岩石力学性质开展评价,但多数评价指标获取费用高昂、耗时长。采用机器学习的手段,提出一种基于Stacking集成学习思想的岩石脆性指数预测方法,并行训练梯度提升决策树模型(GBDT)、随机森林模型(RF)、朴素决策树模型(DT)、支持向量回归模型(SVR)以及LightGBM模型等,并加以树结构Parzen估计器对各模型进行超参数调优后,串行使用XGBoost模型对基模型训练结果进行融合,从而实现各参数的快速寻优和岩石脆性指数的预测。结果表明,基于树结构Parzen估计器优化后的两层Stacking模型预测结果与使用的基模型预测结果相比具有明显优势,其可释方差得分(EVS)最高达到0.97,决定系数(R2)最高达到0.967,在同样的数据集表现中,该模型平均绝对误差(MAE)和均方根误差(RMSE)均最小,表明该模型能够在有监督学习的技术背景下较好地拟合岩石脆性指数的变化规律,验证了其在预测岩石脆性指数方面具有一定的实用价值。 展开更多
关键词 岩石脆性指数 stacking模型 集成学习 树结构Parzen估计器
在线阅读 下载PDF
基于Stacking集成模型的煤层瓦斯含量预测研究 被引量:3
9
作者 王琳 周捷 +2 位作者 林海飞 李文静 张宇少 《煤炭工程》 北大核心 2024年第4期125-132,共8页
煤层瓦斯含量精准预测是预防井下瓦斯灾害事故的重要环节,为提高井下瓦斯含量预测的科学性及准确性,获取不同矿区的41组数据,包括瓦斯含量、埋深、煤厚、水分、灰分以及挥发分。对最小二乘支持向量机(LSSVM)、深度信念网络(DBN)、长短... 煤层瓦斯含量精准预测是预防井下瓦斯灾害事故的重要环节,为提高井下瓦斯含量预测的科学性及准确性,获取不同矿区的41组数据,包括瓦斯含量、埋深、煤厚、水分、灰分以及挥发分。对最小二乘支持向量机(LSSVM)、深度信念网络(DBN)、长短期记忆(LSTM)、Elman神经网络及自适应增强(Adaboost)五种算法进行初选,得到最优基模型为最小支持二乘向量机、自适应增强以及深度信念网络。通过基模型集成得到7种瓦斯含量预测模型,得到Stacking-LSSVM-Adaboost、Adaboost、Stacking-Adaboost-DBN和Stacking-LSSVM-Adaboost-DBN四种模型为优选模型。采用判定系数、平均绝对误差、均方根误差以及平均绝对百分比误差四种预测评价指标对优选出的四种模型进行综合评估,选择MAE<0.2、RMSE<0.3且MAPE<10的模型作为最终瓦斯含量预测模型。结果表明,Stacking-LSSVM-Adaboost-DBN集成模型判定系数为0.951,MAE、RMSE和MAPE分别为0.170、0.204及7.412,所建立模型拥有较高预测精度,可为矿井瓦斯灾害防治提供一定依据。 展开更多
关键词 瓦斯含量预测 stacking集成 五折交叉验证 模型优选 模型评价
在线阅读 下载PDF
基于改进的Stacking集成模型的容器云负载预测研究 被引量:5
10
作者 梁荣华 谢晓兰 +1 位作者 翟青海 张启明 《计算机应用与软件》 北大核心 2023年第12期48-55,100,共9页
容器云的迅速发展使业务量迅速增加,对容器资源利用率的未来趋势进行预测,从而提前分配资源来提高资源的利用率并且降低资源的浪费是一种合理的做法。为了实现对容器云资源的合理预测,提出一种基于改进的Stacking集成方法的云资源负载... 容器云的迅速发展使业务量迅速增加,对容器资源利用率的未来趋势进行预测,从而提前分配资源来提高资源的利用率并且降低资源的浪费是一种合理的做法。为了实现对容器云资源的合理预测,提出一种基于改进的Stacking集成方法的云资源负载预测模型。模型的第一阶段是通过设立基学习器对云资源负载数据进行特征选择,降低数据集特征的复杂度。第二阶段是使用GA-BP神经网络模型改进的DBN模型(DBN-GA-BP)对第一阶段的特征选择数据进行集成预测。实验结果表明,与单一模型和未改进的Stacking模型对比,该模型具有更高的预测精度。 展开更多
关键词 stacking集成模型 遗传算法 深度信念网络 云资源 资源预测
在线阅读 下载PDF
近红外光谱结合Stacking集成学习的猕猴桃糖度检测研究 被引量:1
11
作者 郭志强 张博涛 曾云流 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第10期2932-2940,共9页
利用近红外光谱技术Stacking集成学习对猕猴桃糖度的无损检测。以湖北“云海一号”猕猴桃为研究对象,采用红外分析仪获取了280个样本的光谱数据,包含了4000~10000cm^(-1)范围内的1557个波长数据,使用折射仪测量糖度值。通过蒙特卡洛随... 利用近红外光谱技术Stacking集成学习对猕猴桃糖度的无损检测。以湖北“云海一号”猕猴桃为研究对象,采用红外分析仪获取了280个样本的光谱数据,包含了4000~10000cm^(-1)范围内的1557个波长数据,使用折射仪测量糖度值。通过蒙特卡洛随机采样结合T检验的奇异样本识别算法筛除异常值样本。利用SPXY算法按照4∶1的比例划分训练集和测试集。使用多元散射校正(MSC)、SG平滑滤波(SG)、趋势校正(DT)、矢量归一化(VN)、标准正态变换(SNV)五种方法对数据进行预处理。使用无信息变量消除法(UVE)、竞争性自适应重加权算法(CARS)和区间变量迭代空间收缩特征选择算法(iVISSA)提取特征波长,使用连续投影算法(SPA)进行二次提取,消除共线性变量。由于单一模型的泛化能力有限,为了扩大建模能力,设计了一种基于Stacking算法的集成学习模型。选择贝叶斯岭回归(BRR)、偏最小二乘回归(PLSR)、支持向量机回归(SVR)以及人工神经网络(ANN)作为基学习器,线性回归(LR)作为元学习器建立集成模型,比较不同组合下集成模型的性能。使用Pearson相关系数分析基学习器与集成模型之间的关系。结果表明:在五种预处理方法之中,矢量归一化的效果最佳。对预处理后的光谱进行特征波长提取,结果显示VN-CARS-PLSR模型效果最好,在测试集上的RP2为0.805,RMSEP为0.498。模型提取了177个特征波长,数据量相比于原始光谱减少了88.6%。通过Stacking算法对基学习器进行融合,对比不同的组合方式,发现PLS+SVR+ANN集成模型预测精度最高,RP2达到了0.853,RMSEP下降至0.433。通过Pearson相关系数分析了基学习器对集成模型性能的影响。研究表明,与单一模型相比,Stacking集成模型能够进行更加全面的建模,具有更高的泛化能力,该方法为猕猴桃糖度品质的无损检测提供了技术支持。 展开更多
关键词 猕猴桃 近红外光谱 糖度 stacking集成学习 模型融合
在线阅读 下载PDF
基于多模型融合Stacking集成学习方式的负荷预测方法 被引量:190
12
作者 史佳琪 张建华 《中国电机工程学报》 EI CSCD 北大核心 2019年第14期4032-4041,共10页
人工智能及机器学习技术的快速发展,为负荷预测问题提供了崭新的解决思路。该文结合人工智能的前沿理论研究,提出一种基于多模型融合 Stacking 集成学习方式的负荷预测方法。考虑不同算法的数据观测与训练原理差异,充分发挥各个模型优势... 人工智能及机器学习技术的快速发展,为负荷预测问题提供了崭新的解决思路。该文结合人工智能的前沿理论研究,提出一种基于多模型融合 Stacking 集成学习方式的负荷预测方法。考虑不同算法的数据观测与训练原理差异,充分发挥各个模型优势,构建多个机器学习算法嵌入的 Stacking集成学习的负荷预测模型,模型的基学习器包含 XGBoost树集成算法和长短记忆网络算法。算例使用 ENTSO 中瑞士负荷数据对算法有效性进行了验证。预测结果表明,XGBoost、梯度决策树、随机森林模型能够通过自身模型的增益情况对输入数据的特征贡献度进行量化分析;Stacking中各个基学习器的学习能力越强,关联程度越低,模型预测效果越好;与传统单模型预测相比,基于多模型融合的Stacking 集成学习方式的负荷预测方法有着较高的预测精度。 展开更多
关键词 人工智能 负荷预测 模型融合 stacking集成学习 XGBoost 长短记忆网络
在线阅读 下载PDF
Stacking集成模型模拟膜下滴灌玉米逐日蒸散量和作物系数 被引量:13
13
作者 陈志君 朱振闯 +3 位作者 孙仕军 王秋瑶 苏通宇 付玉娟 《农业工程学报》 EI CAS CSCD 北大核心 2021年第5期95-104,共10页
为准确模拟膜下滴灌玉米逐日蒸散量和作物系数,该研究以4个经典机器学习模型:随机森林(Random Forest,RF)、支持向量机(Support Vector Machine,SVM)、BP神经网络(Back Propagation Neural Network,BP)和Adaboost集成学习模型(Adaboost,... 为准确模拟膜下滴灌玉米逐日蒸散量和作物系数,该研究以4个经典机器学习模型:随机森林(Random Forest,RF)、支持向量机(Support Vector Machine,SVM)、BP神经网络(Back Propagation Neural Network,BP)和Adaboost集成学习模型(Adaboost,ADA)为基础,基于Stacking算法建立了集成学习模型(Linear Stacking Model,LSM)对膜下滴灌玉米逐日蒸散量和作物系数进行模拟。并将LSM的模拟精度与RF、SVM、BP和ADA模型的模拟精度相比较,结果表明:1)RF、SVM、BP和ADA模型模拟膜下滴灌玉米的逐日蒸散量和作物系数时的相对均方根误差均大于0.2;2)相比RF、SVM、BP和ADA模型,LSM模型提高了玉米逐日蒸散量和作物系数模拟精度。LSM模拟的膜下滴灌玉米的作物系数相比于FAO推荐值更接近实测值;3)日序数、平均温度、株高、叶面积指数和短波辐射5个特征对玉米膜下滴灌玉米日蒸散量和作物系数影响最高,基于这5个特征建立的LSM模型模拟膜下滴灌玉米的蒸散量和作物系数的R2分别为0.9和0.89,相对均方根误差分别为0.23和0.16。因此,建议在该研究区使用日序数、平均温度、株高、叶面积指数和短波辐射5个特征参数建立LSM模型模拟膜下滴灌玉米蒸散量和作物系数。该研究可为高效节水条件下作物蒸散量和作物系数的精准模拟和合理制定灌溉制度提供参考。 展开更多
关键词 蒸散 模型 温度 机器学习 stacking集成学习 膜下滴灌 作物系数
在线阅读 下载PDF
基于多模型集成的和田河流域中长期融雪径流预测
14
作者 刘东琪 何厚军 +3 位作者 邱禹 王蕊 李胜阳 王文 《人民长江》 北大核心 2025年第5期97-104,120,共9页
融雪径流是西北干旱地区水资源的重要组成部分,准确的径流预测是水资源管理工作的基础。利用2001~2023年新疆和田河流域MODIS积雪资料和实测流量资料,以积雪覆盖率、雪线高度与大尺度气象-气候指数等作为预报因子,通过主成分分析筛选出... 融雪径流是西北干旱地区水资源的重要组成部分,准确的径流预测是水资源管理工作的基础。利用2001~2023年新疆和田河流域MODIS积雪资料和实测流量资料,以积雪覆盖率、雪线高度与大尺度气象-气候指数等作为预报因子,通过主成分分析筛选出主要预报因子,然后采用多元回归分析、支持向量机和随机森林3种方法建立和田河流域两断面融雪径流的数据驱动模型,再基于Stacking融合算法对上述模型进行集成,建立集成预报模型进行融雪径流预测。结果表明:3种模型在中长期融雪径流预报上均具有较好的预报效果,且随机森林模型预报精度整体优于多元回归模型和支持向量回归模型;基于Stacking融合算法,将多元回归模型、支持向量机模型和随机森林模型融合后的集成模型性能优于单一模型,预测精度得以提升,RMSE从0.308 m^(3)/s降低至0.240 m^(3)/s,MAE从0.227 m^(3)/s降低至0.188 m^(3)/s,R^(2)从0.864提升至0.874。研究成果可为西北地区水资源分配与调度、洪涝灾害防御等提供参考。 展开更多
关键词 融雪径流 积雪覆盖率 模型集成 数据驱动模型 stacking算法 和田河流域 新疆
在线阅读 下载PDF
基于Stacking集成学习的机械钻速预测方法 被引量:3
15
作者 高云伟 罗利民 +3 位作者 薛凤龙 刘洋 严昊 郑双进 《石油机械》 北大核心 2024年第5期17-24,52,共9页
机械钻速是评估石油天然气钻井作业效率的重要指标。为准确预测新疆工区某油田钻井机械钻速,基于该工区的历史钻井数据,利用局部离群因子检测算法对数据进行预处理,建立了基于Stacking集成学习的机械钻速预测模型,该模型通过Stacking集... 机械钻速是评估石油天然气钻井作业效率的重要指标。为准确预测新疆工区某油田钻井机械钻速,基于该工区的历史钻井数据,利用局部离群因子检测算法对数据进行预处理,建立了基于Stacking集成学习的机械钻速预测模型,该模型通过Stacking集成策略融合K近邻算法(KNN)、支持向量机算法(SVM)和随机森林算法(RF)进行预测验证。预测验证结果显示,分类准确度不高。运用遗传算法进行各基础模型参数优化。优化后,基于KNN、SVM、RF及Stacking集成4种算法,预测机械钻速准确率分别为73.7%、78.9%、81.6%及97.4%,其中Stacking集成模型预测准确率最高。基于Stacking集成学习的机械钻速预测方法开发了机械钻速预测软件,运用软件预测其他2套施工参数下的机械钻速,结果表明,预测机械钻速与实际机械钻速一致,且性能稳定,表明该模型拥有较强的泛化性和较高的预测精度。该智能算法可为新疆工区的该油田机械钻速预测与钻井施工参数优化提供一种新手段。 展开更多
关键词 机械钻速 预测模型 stacking集成学习 机器学习 施工参数优化 预测验证
在线阅读 下载PDF
多模型Stacking集成学习的旋转机械故障诊断方法 被引量:6
16
作者 姜万录 赵岩 +3 位作者 李振宝 杨旭康 张士博 张淑清 《液压与气动》 北大核心 2023年第4期46-58,共13页
针对传统旋转机械故障诊断方法中单一机器学习模型出现的诊断精度低、泛化能力差且性能提升有限等问题,提出了通过Stacking框架异质集成多个机器学习模型对旋转机械进行故障诊断。首先利用小波包变换对旋转机械的原始振动信号进行特征提... 针对传统旋转机械故障诊断方法中单一机器学习模型出现的诊断精度低、泛化能力差且性能提升有限等问题,提出了通过Stacking框架异质集成多个机器学习模型对旋转机械进行故障诊断。首先利用小波包变换对旋转机械的原始振动信号进行特征提取;然后通过贝叶斯优化和网格搜索结合的方法调节各基学习器的超参数,采用DT、KNN、SVM及RF作为初级学习器,LR作为次级学习器构建Stacking异质集成学习模型;最后通过滚动轴承和液压泵故障模拟试验,将所提模型与单一模型、同质集成模型进行比较分析。试验结果表明,异质集成Stacking模型在不同旋转机械的故障诊断中均获得了最佳的整体诊断性能。异质集成是提高旋转机械故障诊断性能的有广阔应用前景的解决方案。 展开更多
关键词 stacking模型 异质集成学习 故障诊断 旋转机械
在线阅读 下载PDF
基于Stacking集成元模型的作战体系能力图谱生成方法 被引量:7
17
作者 马骏 杨镜宇 邹立岩 《系统工程与电子技术》 EI CSCD 北大核心 2022年第1期154-163,共10页
作战体系能力图谱是从整体分析作战体系能力的有效方法。针对生成作战体系能力图谱时,需要对海量实验空间进行仿真而带来时效性较差的问题,提出一种基于Stacking集成元模型的作战体系能力图谱生成方法。该方法通过建立元模型替代仿真模... 作战体系能力图谱是从整体分析作战体系能力的有效方法。针对生成作战体系能力图谱时,需要对海量实验空间进行仿真而带来时效性较差的问题,提出一种基于Stacking集成元模型的作战体系能力图谱生成方法。该方法通过建立元模型替代仿真模型,能够快速准确生成作战体系能力图谱。针对各类元模型适用场景有限、性能波动较大的问题,提出采用Stacking方法对多种元模型进行集成,提高不同应用环境下元模型的鲁棒性;针对建立元模型时精度与效率的矛盾问题,提出适用于体系能力图谱生成的序贯采样策略,通过计算拟合不确定性,选取高价值样本,在达到相同准确性指标的同时减少采样次数。最后,通过实验案例分析,证明了所提方法的有效性。 展开更多
关键词 作战体系 能力图谱 stacking集成学习 模型
在线阅读 下载PDF
基于Stacking集成学习的剩余使用寿命预测 被引量:2
18
作者 韩腾飞 李亚平 《计算机集成制造系统》 EI CSCD 北大核心 2024年第7期2464-2473,共10页
剩余使用寿命(RUL)预测对于设备维护策略的制定有着关键作用。面对可变环境和多样的操作条件,单一寿命预测模型的性能波动较大,泛化能力弱。针对这一问题,提出一种融合多个相异模型的Stacking集成模型,纠正单一模型的预测误差。首先,对... 剩余使用寿命(RUL)预测对于设备维护策略的制定有着关键作用。面对可变环境和多样的操作条件,单一寿命预测模型的性能波动较大,泛化能力弱。针对这一问题,提出一种融合多个相异模型的Stacking集成模型,纠正单一模型的预测误差。首先,对状态监测数据进行滑动时间窗口处理,获得具有时间序列信息的性能退化数据;然后,以提高模型的准确性和多样性为目标,确定基学习器的种类;最后,将梯度提升决策树(GBDT)作为元学习器,整合基学习器的预测结果,输出最终结果。基于NASA C-MAPSS数据集,对提出的集成模型进行验证,结果表明:Stacking集成模型的预测精度显著高于基学习器,与其他传统预测模型相比,也具有明显优势。 展开更多
关键词 stacking集成模型 剩余寿命预测 滑动时间窗口 集成学习
在线阅读 下载PDF
基于mRMR-BO优化Stacking集成模型的NO_(x)浓度动态软测量 被引量:4
19
作者 金秀章 乔鹏 史德金 《热力发电》 CAS CSCD 北大核心 2023年第10期122-128,共7页
针对火电厂选择性催化还原(selective catalytic reduction,SCR)烟气脱硝系统中,由于影响入口NO_(x)质量浓度因素过多及系统大迟延大惯性,导致入口NO_(x)质量浓度难以准确及时测量的问题,提出了利用最大相关-最小冗余算法(max-relevance... 针对火电厂选择性催化还原(selective catalytic reduction,SCR)烟气脱硝系统中,由于影响入口NO_(x)质量浓度因素过多及系统大迟延大惯性,导致入口NO_(x)质量浓度难以准确及时测量的问题,提出了利用最大相关-最小冗余算法(max-relevance and min-redundancy,mRMR)结合贝叶斯优化算法(Bayesian optimization,BO)优化Stacking集成模型的SCR烟气脱硝系统入口NO_(x)质量浓度动态软测量模型。针对动态NO_(x)生成过程中静态单一模型预测精度降低及辅助变量与入口NO_(x)质量浓度时间异步的问题,利用mRMR-BO结合模型进行辅助变量筛选,Copula熵(copula entropy,CE)确定辅助变量迟延,BO结合模型确定辅助变量阶次,将TCN及LASSO利用Stacking法集成,使用含有迟延时间及阶次信息的辅助变量构建动态Stacking集成软测量模型。仿真结果显示:集成模型较TCN及LASSO单一网络的均方根误差、平均绝对误差、平均绝对百分比误差最小;动态集成模型对比静态集成模型,预测精度更高,能够实现对入口NO_(x)质量浓度的准确软测量。 展开更多
关键词 NO_(x)动态建模 最大相关-最小冗余 贝叶斯优化 stacking集成模型
在线阅读 下载PDF
基于Stacking模型集成算法的莲都区南方红豆杉潜在分布区 被引量:4
20
作者 陈涵 张超 余树全 《浙江农林大学学报》 CAS CSCD 北大核心 2019年第3期494-500,共7页
研究使用R软件中的CaretEnsemble和Caret程序包,并基于Stacking方法来实现模型集成,研究南方红豆杉Taxus chinensis var.mairei在浙江省丽水市莲都区的潜在分布区,并比较5种单一模型的模拟结果及其与集成模型的差异。结果表明:单一模型... 研究使用R软件中的CaretEnsemble和Caret程序包,并基于Stacking方法来实现模型集成,研究南方红豆杉Taxus chinensis var.mairei在浙江省丽水市莲都区的潜在分布区,并比较5种单一模型的模拟结果及其与集成模型的差异。结果表明:单一模型中极端梯度上升模型表现最好,其次是随机森林模型、支持向量机模型、朴素贝叶斯模型和分类回归树模型,集成模型模拟结果好于单一模型,其Kappa值达0.80,准确率达0.90。集成模型模拟结果显示:影响南方红豆杉分布的主要环境因子为海拔、归一化植被指数和年平均最少降雨量。南方红豆杉主要适宜生长在浙江省丽水市莲都区的山地丘陵地区,中部盆地及平原地区不适宜南方红豆杉的生长,其在莲都区的潜在分布区面积为5.01万hm^2。构建的集成模型在一定程度上提高了模型精度,使预测效果更优。 展开更多
关键词 森林生态学 物种分布模型 集成学习 stacking算法 南方红豆杉 浙江省丽水市莲都区
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部