期刊文献+
共找到378篇文章
< 1 2 19 >
每页显示 20 50 100
改进DeepLabV3+的数控铣床误差控制方法
1
作者 潘卫华 唐智灵 李俊 《机械设计与制造》 北大核心 2025年第8期244-249,255,共7页
现有数控铣床误差控制方法多数采用PID控制方法,而PID参数的整定需要通过反复试验来实现,且易出现参数调整不当现象,导致控制效果不佳。对此,利用改进DeepLabV3+算法优化设计数控铣床误差控制方法。首先,分析数控铣床组成结构,确定数控... 现有数控铣床误差控制方法多数采用PID控制方法,而PID参数的整定需要通过反复试验来实现,且易出现参数调整不当现象,导致控制效果不佳。对此,利用改进DeepLabV3+算法优化设计数控铣床误差控制方法。首先,分析数控铣床组成结构,确定数控铣床传感器安装位置,获取数控铣床运行数据。然后,在改进DeepLabV3+算法支持下,提取数控铣床主轴旋转与刀具的移动轨迹特征。最后,采用特征匹配的方式辨识铣床的误差状态,生成包含误差控制量和控制方向的指令,通过控制指令的执行,实现数控铣床误差控制任务。通过性能测试实验得出结论:与传统控制方法相比,在优化设计方法控制下,数控铣床的剩余误差明显降低。 展开更多
关键词 改进deeplabv3+ 数控机床 铣床 工作误差 误差控制
在线阅读 下载PDF
基于改进DeepLabV3+的钢桥锈蚀检测方法 被引量:1
2
作者 黄海新 贺朝 +2 位作者 程寿山 许瑞宁 张连振 《重庆交通大学学报(自然科学版)》 北大核心 2025年第2期18-24,60,共8页
锈蚀检测算法是钢桥管养从人工视觉向机器视觉转型的关键,更是智能化钢桥检测机器人构建的技术基础。面向钢桥智能检测机器人对锈蚀检测算法低能耗和高精度的实际需求,针对DeepLabV3+模型加以改进,采用MobileNetV2主干网络替换原模型中... 锈蚀检测算法是钢桥管养从人工视觉向机器视觉转型的关键,更是智能化钢桥检测机器人构建的技术基础。面向钢桥智能检测机器人对锈蚀检测算法低能耗和高精度的实际需求,针对DeepLabV3+模型加以改进,采用MobileNetV2主干网络替换原模型中的Xception主干网络,使模型轻量化以易适配移动端设备,优化ASPP模块中的空洞率以提高网络对不同尺寸锈蚀的提取效果,添加CBAM注意力机制增强模型对关键特征的感知和捕捉;将改进后的DeepLabV3+模型与原DeepLabV3+模型、PSPNet模型和U-Net模型进行了对比,同时开展了消融实验;最后,将改进模型搭载于视觉机器人上,并开展实地工程测试。结果表明:相比于其它模型,改进的DeepLabV3+模型对钢桥锈蚀图像的分割准确率平均提高了7.5%,平均交并比平均提高了14.7%,召回率平均提高了9.1%。 展开更多
关键词 桥梁工程 deeplabv3+ 钢桥锈蚀检测 卷积神经网络 图像分割
在线阅读 下载PDF
基于改进DeepLabV3+的非结构化道路可行驶区域检测
3
作者 段小勇 何超 刘学渊 《中国农机化学报》 北大核心 2025年第2期271-278,共8页
为实现非结构化林间道路可行驶区域的快速准确识别,针对林间道路边界不明显、道路形状不规范以及道路覆盖等问题,提出一种基于改进DeepLabV3+的林地非结构化道路分割模型。使用MobileNetV3网络代替传统DeepLabV3+主干网络以实现轻量化设... 为实现非结构化林间道路可行驶区域的快速准确识别,针对林间道路边界不明显、道路形状不规范以及道路覆盖等问题,提出一种基于改进DeepLabV3+的林地非结构化道路分割模型。使用MobileNetV3网络代替传统DeepLabV3+主干网络以实现轻量化设计,使图像分割速度及实时性显著提升;在主干网络解码器部分引入CBAM注意力机制,通过对ASPP模块参数调整,增强对非结构化道路在边界区域的特征提取与识别;采用融合损失函数,提高模型收敛速率及准确度,避免模型在复杂环境下出现错误检测区域。结果表明,改进后的DeepLabV3+检测平均帧数提升26.69帧/s,较原模型检测速率提升约54%,检测准确率提升至91.26%,同时,在强光、逆光以及路面积水等多种情况下均未出现漏检、误检和边界分割不清晰等现象,为非结构化道路自动驾驶提供技术参考。 展开更多
关键词 非结构化道路 语义分割 deeplabv3+ 注意力机制 损失函数
在线阅读 下载PDF
基于改进DeepLabV3+的云南省光伏板识别方法 被引量:1
4
作者 徐真 周仿荣 +4 位作者 高振宇 文刚 马御棠 朱鹏航 吴磊 《东华大学学报(自然科学版)》 北大核心 2025年第2期215-221,共7页
光伏板提取是山火遥感监测虚警库建设的重要部分,对于避免山火遥感监测误报、提升山火遥感监测运行效率等具有重要意义。云南省地处云贵高原,地表环境较为复杂,采用遥感技术提取光伏板面临较大挑战。为克服光伏板样本不均衡等难点,将Res... 光伏板提取是山火遥感监测虚警库建设的重要部分,对于避免山火遥感监测误报、提升山火遥感监测运行效率等具有重要意义。云南省地处云贵高原,地表环境较为复杂,采用遥感技术提取光伏板面临较大挑战。为克服光伏板样本不均衡等难点,将ResNet-50残差网络作为DeepLabV3+语义分割模型的骨干网络,在空洞空间金字塔池化(ASPP)模块后融入注意力机制以更有效地聚合特征的多尺度上下文信息。构建云南省光伏板提取模型,并进行精度评价。结果显示,利用改进的DeepLabV3+模型进行光伏板提取的精准率达97.95%,召回率达95.84%,交并比达93.73%,在各模型中表现最佳,能实现高精度的光伏板提取,利用该模型提取云南省光伏板面积共40.149 km^(2)。 展开更多
关键词 deeplabv3+ 光伏板 语义分割 深度学习
在线阅读 下载PDF
基于改进DeeplabV3+算法的地铁轨行区识别
5
作者 刘嘉宁 赵才友 张银喜 《铁道建筑》 北大核心 2025年第2期139-145,共7页
为解决现有基于深度学习的算法在地铁轨道区域识别上目标分割不精确、计算和存储资源需求大、检测速度慢的问题,提出了一种基于改进DeeplabV3+算法的地铁轨道区域识别算法。该模型将主干网络替换为有较低的模型大小和计算复杂度的轻量... 为解决现有基于深度学习的算法在地铁轨道区域识别上目标分割不精确、计算和存储资源需求大、检测速度慢的问题,提出了一种基于改进DeeplabV3+算法的地铁轨道区域识别算法。该模型将主干网络替换为有较低的模型大小和计算复杂度的轻量级卷积神经网络MobileNetV2,引入注意力机制CBAM(Channel Attention Module)来提高网络对特征的感知能力,并改进ASPP(Atrous Spatial Pyramid Pooling)使其能编码多尺度信息。应用自制数据集验证本文方法的有效性,并与经典DeeplabV3+、U-net、MaskR-CNN算法进行对比分析。结果表明:本文算法精确率、准确率、召回率、平均交并比分别为94.57%、94.43%、93.49%、90.24%,训练时长6.5 h,单张图像预测时长51.78 ms,模型大小为23 MB,均优于其他三种算法。本文算法在提高对轨道区域图像分割性能的同时,增强了模型的训练和检测效率,具有运用于地铁轨道区域识别的可行性和实用性。 展开更多
关键词 地铁 轨道区域识别 深度学习 语义分割 deeplabv3+算法
在线阅读 下载PDF
基于改进DeepLabV3+的水稻白叶枯病原菌TEM图像分割
6
作者 王静 范馨月 《激光杂志》 北大核心 2025年第6期89-95,共7页
针对多个水稻白叶枯病原菌挤压、重叠及杂质干扰等因素,导致细胞边界清晰度下降、轮廓分割不准确等问题,提出改进DeepLabV3+图像分割方法。首先,为排除外部因素干扰,根据细胞分裂不同状态进行分类,使用YOLOv4目标检测模型提取每个类别... 针对多个水稻白叶枯病原菌挤压、重叠及杂质干扰等因素,导致细胞边界清晰度下降、轮廓分割不准确等问题,提出改进DeepLabV3+图像分割方法。首先,为排除外部因素干扰,根据细胞分裂不同状态进行分类,使用YOLOv4目标检测模型提取每个类别病原菌图像;其次,为防止在单一尺度特征提取的目标方式使图像上大目标特征提取冗余以及小目标发生丢失,导致输出特征层清晰度降低的问题,通过多尺度特征融合网络结构提高特征学习的表征能力和精度;进而,引入通道注意力机制,突出对重要影响通道信息特征的学习能力,抑制冗余信息;最后,与经典分割模型DeepLabV3+、Unet、PSPNet和YOLOv10对比,根据mIOU、Precision、Accuracy、Recall以及mPA评价指标结果分析,表明改进DeepLabV3+模型在水稻白叶枯病原菌TEM图像分割精度与效果上均有一定提升。 展开更多
关键词 deeplabv3+ 多尺度融合 通道注意力 图像分割 TEM图像
在线阅读 下载PDF
基于改进DeepLabV3+网络的荔枝种植面积提取方法
7
作者 刘振国 孙永旺 +2 位作者 张喜珍 刘宜浩 鲍荣中 《农业工程学报》 北大核心 2025年第12期191-197,共7页
现有的荔枝种植面积遥感提取方法存在提取精度不高、分割效果欠佳、训练时间长以及模型复杂度高等问题。为此该研究提出了改进的DeepLabV3+模型,将主干网络Xception替换为MobileNetV2,保证精度的同时节约时间;构建DenseASPP模块增强多... 现有的荔枝种植面积遥感提取方法存在提取精度不高、分割效果欠佳、训练时间长以及模型复杂度高等问题。为此该研究提出了改进的DeepLabV3+模型,将主干网络Xception替换为MobileNetV2,保证精度的同时节约时间;构建DenseASPP模块增强多尺度特征提取;引入通道注意力机制和条带池化,抑制干扰,提高精度。并与SegFormer、PSPNet和UNet图像分割模型进行对比。结果表明,改进模型的平均交并比(mean intersection over union,MIoU)、平均像素精度(mean pixel accuracy,mPA)和准确率(accuracy,Ac)分别为83.55%、91.58%、91.15%,相比于原始的DeepLabV3+模型分别提高了8.15、5.27、4.97个百分点,而与其他模型对比,该模型通过结构优化将参数量压缩至5.8 M,计算复杂度降为22.4 GFLOPs,较原始的DeepLabV3+降低94%,较PSPNet减少95%。研究结果为准确了解和掌握种植区的空间分布及变迁趋势提供参考。 展开更多
关键词 深度学习 荔枝 语义分割 种植面积提取 deeplabv3+模型 MobileNetV2
在线阅读 下载PDF
基于改进DeepLabv3的自然图像语义分割算法 被引量:3
8
作者 赵晓 王若男 +1 位作者 杨晨 李玥辰 《陕西科技大学学报》 北大核心 2024年第2期182-188,共7页
针对DeepLabv3模型对自然图像语义分割时存在的图像局部细节信息丢失导致的误分割和物体边缘分割不完整的问题,提出了一种改进DeepLabv3模型的自然图像语义分割网络,能够以更高的准确率实现自然图像的语义分割.首先,使用ResNet101作为... 针对DeepLabv3模型对自然图像语义分割时存在的图像局部细节信息丢失导致的误分割和物体边缘分割不完整的问题,提出了一种改进DeepLabv3模型的自然图像语义分割网络,能够以更高的准确率实现自然图像的语义分割.首先,使用ResNet101作为骨干网络进行特征提取,把ResNet101网络最后两层提取到的特征图输入到设计的ACMix多重融合模块(ACMix Multiple Fusion Module,AMFM)中,有效获取不同尺度的空间特征信息,将融合之后的结果作为空洞空间金字塔池化模块(Atrous Spatial Pyramid Pooling,ASPP)的输入.其次,添加辅助分支模块(Auxiliary Branch Module,ABM),将ResNet101网络第三层提取到的特征图输入到ABM中,有效提取更丰富的边缘特征信息.最后,将主分支和辅助分支的结果融合作为输出,融合后的输出不仅追踪到了不同尺度的空间特征信息,而且提取到了完整的边缘特征信息,从而使模型更有效地提高分割精度.PASCAL VOC 2012数据集的结果表明,改进后的模型相比于原模型分割精度提升了3.21%,与其它网络模型相比,也具有较好的分割精度. 展开更多
关键词 语义分割 deeplabv3 多尺度特征融合
在线阅读 下载PDF
基于改进DeepLabv3+的光伏电站道路识别方法 被引量:2
9
作者 李翠明 王华 +1 位作者 徐龙儿 王龙 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期776-782,I0010,共8页
针对移动清洁机器人在光伏电站作业时需要精确快速识别道路的问题,提出一种改进的DeepLabv3+目标识别模型对光伏电站道路进行识别.首先,将原DeepLabv3+模型的主干网络替换为优化的MobileNetv2网络以降低模型复杂度;其次,采用异感受野融... 针对移动清洁机器人在光伏电站作业时需要精确快速识别道路的问题,提出一种改进的DeepLabv3+目标识别模型对光伏电站道路进行识别.首先,将原DeepLabv3+模型的主干网络替换为优化的MobileNetv2网络以降低模型复杂度;其次,采用异感受野融合和空洞深度可分离卷积结合的策略改进空洞空间金字塔池化(ASPP)结构,提高ASPP的信息利用率和模型训练效率;最后,引入注意力机制,提升模型识别精度.结果表明,改进后模型的平均像素准确率为98.06%,平均交并比为95.92%,相比于DeepLabv3+基础模型分别提高了1.79个百分点、2.44个百分点,且高于SegNet、UNet模型.同时,改进后的模型参数量小,实时性好,能够更好地实现光伏电站移动清洁机器人的道路识别. 展开更多
关键词 光伏电站 道路识别 deeplabv3+模型 注意力机制 MobileNetv2
在线阅读 下载PDF
基于改进DeepLabv3+的轻量化作物杂草识别方法 被引量:3
10
作者 曲福恒 李金状 +2 位作者 杨勇 康镇南 严兴旺 《石河子大学学报(自然科学版)》 CAS 北大核心 2024年第1期117-125,共9页
为在存储资源与计算能力有限的设备上实现田间作物和杂草的识别,本文提出一种基于改进DeepLabv3+的轻量化语义分割网络。首先,以MobileNet v2作为DeepLabv3+的特征提取骨干网络,提出双分支残差模块替换倒残差模块,并删除后两层卷积以降... 为在存储资源与计算能力有限的设备上实现田间作物和杂草的识别,本文提出一种基于改进DeepLabv3+的轻量化语义分割网络。首先,以MobileNet v2作为DeepLabv3+的特征提取骨干网络,提出双分支残差模块替换倒残差模块,并删除后两层卷积以降低模型参数量。其次,在空洞空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块中引入分组逐点卷积,使用深度扩张卷积替换标准卷积,并将卷积后的特征图进行多尺度特征融合增强对作物和杂草深层特征的提取能力。最后,将原有的非线性激活函数替换为Leaky ReLU激活函数来提升分割精度。实验结果表明:改进后网络的mIOU达到86.75%,参数量仅为0.69M,FPS达到了98,与原始DeepLabv3+以及3个典型轻量化语义分割网络的相比,参数量最小,在对比的轻量化网络中具有最高的分割精度。 展开更多
关键词 作物和杂草识别 轻量化 语义分割 deeplabv3+ MobileNet v2 多尺度特征融合
在线阅读 下载PDF
基于改进Deeplabv3+算法的滚珠丝杠驱动表面点蚀缺陷检测 被引量:1
11
作者 郎朗 陈晓琴 +1 位作者 刘莎 周强 《计算机科学》 CSCD 北大核心 2024年第S01期588-593,共6页
针对滚珠丝杠驱动表面背景环境复杂、点蚀缺陷目标小因而难以检测的问题,提出改进的Deeplabv3+滚珠丝杠驱动表面缺陷分割算法。本算法采用Re2Net-50替换Deeplabv3+的主干网络,显著提升了对小尺寸缺陷目标的识别能力。此外,通过在主干网... 针对滚珠丝杠驱动表面背景环境复杂、点蚀缺陷目标小因而难以检测的问题,提出改进的Deeplabv3+滚珠丝杠驱动表面缺陷分割算法。本算法采用Re2Net-50替换Deeplabv3+的主干网络,显著提升了对小尺寸缺陷目标的识别能力。此外,通过在主干网络中融合特征金字塔网络FPN,能够加强多尺度信息的提取,从而增强了对缺陷目标的精确定位。最后,本研究在Deeplabv3+网络的ASPP模块之后引入了Coordinate Attention机制,能够增强模型对图像中空间和维度的关注,有效地捕获了图像中的长距离空间依赖关系。实验结果表明,与原始的Deeplabv3+相比,所提算法在平均交并比MIoU指标上提高了4.38%,准确率Accuracy提高了5.52%,F1-score提高了2.74%。同时,与其他经典的语义分割算法相比,所提算法也展现出了一定的优越性。 展开更多
关键词 滚珠丝杠驱动 缺陷检测 deeplabv3+ 多尺度特征 注意力机制
在线阅读 下载PDF
基于改进DeepLabv3+的遥感影像道路提取算法 被引量:2
12
作者 王谦 何朗 +1 位作者 王展青 黄坤 《计算机科学》 CSCD 北大核心 2024年第8期168-175,共8页
道路提取可以帮助人们更好地理解城市环境,是城市交通和城市规划等方面的重要部分,随着深度学习与计算机视觉的发展,利用基于深度学习的语义分割算法从遥感影像中提取道路的技术趋于成熟。针对现有的深度学习道路提取算法存在的提取速... 道路提取可以帮助人们更好地理解城市环境,是城市交通和城市规划等方面的重要部分,随着深度学习与计算机视觉的发展,利用基于深度学习的语义分割算法从遥感影像中提取道路的技术趋于成熟。针对现有的深度学习道路提取算法存在的提取速度慢和容易受背景环境因素干扰而产生漏分割、不连续等问题,提出了一种基于ECANet注意力机制和级联空洞空间金字塔池化模块的轻量化算法CE-DeepLabv3+。首先,将主干特征提取网络更换为轻量级的MobileNetv2,减少参数量,提高模型的执行速度;其次,通过增加空洞空间金字塔池化模块的卷积层进一步扩大感受野,再级联不同特征层来增强语义信息的复用性,从而加强对细节特征的提取能力;再次,加入ECANet注意力机制,抑制背景环境中的干扰因素,聚焦道路信息;最后,采用改进的损失函数进行训练,消除了道路与背景样本不均衡对模型性能产生的影响。实验结果表明,改进算法的性能优良,与原始DeepLabv3+算法相比,在分割效率、分割精度上有较大的提升。 展开更多
关键词 语义分割 遥感影像 道路提取 注意力机制 deeplabv3+ 级联空洞空间金字塔池化
在线阅读 下载PDF
基于改进DeepLabV3+的荞麦苗期无人机遥感图像分割识别方法研究 被引量:11
13
作者 武锦龙 吴虹麒 +2 位作者 李浩 雷兴鹏 宋海燕 《农业机械学报》 EI CAS CSCD 北大核心 2024年第5期186-195,共10页
针对DeepLabV3+语义分割模型计算复杂度高、内存消耗大、难以在计算力有限的移动平台上部署等问题,提出一种改进的轻量化DeepLabV3+深度学习语义分割算法,用于实现无人机荞麦苗期图像的分割与识别。该算法采用RepVGG(Re-parameterizatio... 针对DeepLabV3+语义分割模型计算复杂度高、内存消耗大、难以在计算力有限的移动平台上部署等问题,提出一种改进的轻量化DeepLabV3+深度学习语义分割算法,用于实现无人机荞麦苗期图像的分割与识别。该算法采用RepVGG(Re-parameterization visual geometry group)与MobileViT(Mobile vision transformer)模块融合的方式建立主干网络实现特征提取;同时,在RepVGG网络结构中引入SENet(Squeeze-and-excitation networks)注意力机制,通过利用通道间的相关性,捕获更多的全局语义信息,保证荞麦分割的性能。实验结果表明,与FCN(Fully convolutional networks)、PSPNet(Pyramid scene parsing network)、DenseASPP(Dense atrous spatial pyramid pooling)、DeepLabV3、DeepLabV3+模型相比,本文提出的改进算法在较大程度上降低了模型参数规模,更适合在移动端部署,自建荞麦苗期分割数据集上的语义分割平均像素准确率(Mean pixel accuracy,mPA)和平均交并比(Mean intersection over union,mIoU)分别为97.02%和91.45%,总体参数量、浮点运算次数(Floating-point operations,FLOPs)和推理速度分别为9.01×10^(6)、8.215×10^(10)、37.83 f/s,综合表现最优。在全尺寸图像分割中,训练模型对不同飞行高度的荞麦苗期分割的mPA和mIoU均能满足要求,也具有较好的分割能力和推理速度,该算法可为后期荞麦补种、施肥养护和长势监测等提供重要技术支持,进而促进小杂粮产业智能化发展。 展开更多
关键词 荞麦苗期 无人机遥感 图像语义分割 deeplabv3+ 轻量化
在线阅读 下载PDF
基于改进DeepLabV3+的轻量化茶叶嫩芽采摘点识别模型 被引量:3
14
作者 胡程喜 谭立新 +1 位作者 王文胤 宋敏 《智慧农业(中英文)》 CSCD 2024年第5期119-127,共9页
[目的/意义]名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一... [目的/意义]名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一种新型深度学习算法解决名优茶采摘点的精确分割难题。[方法]对传统的DeepLabV3+算法进行轻量化改进。首先,针对其模型体量大、训练时间长的问题,使用MobilenetV2网络提取图像的初始特征,并按照网络结构划分深浅层特征;其次,将高效通道注意力网络(Efficient Channel Attention Network,ECANet)与空洞空间卷积池化金字塔(Atrous Spatial Pyramid Pooling,ASPP)模块结合,得到ECA_ASPP模块,并将深层特征输入到ECA_ASPP模块中进行多尺度特征融合以减少无效信息,将经过处理后的深浅层特征相加,随后通过卷积和上采样的方式对特征信息进行还原,得到分割结果;最后,通过对识别结果进行处理以获得茶叶嫩芽采摘点。[结果和讨论]改进后的DeepLabV3+在茶叶嫩芽数据集上的平均交并比达到93.71%,平均像素准确率达到97.25%,模型参数量由原来以Xception为底层网络的54.714 M下降至5.818 M。[结论]本研究在茶叶嫩芽结构分割上相对于原版DeepLabV3+的检测速度更快、参数量更小,同时保证了较高的准确率,为智能采茶机器人的采摘提供了新的定位方法。 展开更多
关键词 轻量化模型 deeplabv3+ 注意力机制 茶叶嫩芽 ECANet 名优茶 空洞空间卷积池化金字塔
在线阅读 下载PDF
基于改进DeepLabV3+的引导式道路提取方法及在震源点位优化中的应用 被引量:1
15
作者 曹凯奇 张凌浩 +3 位作者 徐虹 吴蔚 文武 周航 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第2期128-142,共15页
为解决自动识别方法在道路提取时存在漏提、错提现象,提出一种引导式道路提取方法提高修正效率。在DeepLabV3+原有输入通道(3通道)的基础上添加额外输入通道(第4通道),将道路的4个极点转化为二维高斯热图后作为额外通道输入网络,网络以... 为解决自动识别方法在道路提取时存在漏提、错提现象,提出一种引导式道路提取方法提高修正效率。在DeepLabV3+原有输入通道(3通道)的基础上添加额外输入通道(第4通道),将道路的4个极点转化为二维高斯热图后作为额外通道输入网络,网络以极点作为引导信号,使网络适用于引导式道路提取任务;设计并行多分支模块,提取上下文信息,增强网络特征提取能力;融合类均衡二值交叉熵和骰子系数组成新的复合损失函数进行训练缓解正负样本不均衡问题。在公共Deepglobe数据集和西南某区域三维实际数据集上对本文网络进行验证,在Deepglobe上的像素精确度PA、交并比IOU、F1分数分别达到82.29%、68.81%和81.52%;在西南某区域三维数据集上PA、IOU、F1分别达到89.05%、81.01%和89.51%。实际应用表明:该方法能够有效提高道路识别精度,道路符合率达到85%以上,为后续震源点布设提供准确的信息。 展开更多
关键词 道路拾取 深度学习 deeplabv3+ 震源点布设
在线阅读 下载PDF
改进DeepLabv3+模型的混凝土坝表观裂缝特征提取方法 被引量:3
16
作者 王琳琳 孟良 +2 位作者 卜博雅 钟胜 李俊杰 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期929-936,共8页
为了解决混凝土坝环境复杂造成现有算法裂缝检测难度大、效果差的问题,提出了一种改进DeepLabv3+模型的混凝土坝裂缝特征提取方法.该方法以轻量型网络替换原始骨干网络提取图像特征,降低模型复杂度;扩充空洞空间金字塔池化模块,提升编... 为了解决混凝土坝环境复杂造成现有算法裂缝检测难度大、效果差的问题,提出了一种改进DeepLabv3+模型的混凝土坝裂缝特征提取方法.该方法以轻量型网络替换原始骨干网络提取图像特征,降低模型复杂度;扩充空洞空间金字塔池化模块,提升编码器感受野;采用多尺度特征融合策略,提高边缘信息利用率;优化模型损失函数,克服像素不均衡的困难.采用自制混凝土坝表观裂缝图像数据集对提出方法的有效性和优越性进行了验证与评估,结果表明:构建的改进网络能准确地实现复杂背景下混凝土坝表观裂缝特征的提取,分割裂缝图像的交并比与像素精度分别为72.85%与85.36%,裂缝分割效果也明显优于其他方法,可为长期混凝土坝面裂缝监测提供有效的技术手段. 展开更多
关键词 混凝土坝 裂缝检测 图像分割 deeplabv3+模型
在线阅读 下载PDF
基于改进DeepLabV3+的梨树冠层分割方法 被引量:1
17
作者 陈鲁威 曾锦 +3 位作者 袁全春 夏烨 潘健 吕晓兰 《中国农机化学报》 北大核心 2024年第4期155-161,共7页
针对杂草和阴影等较复杂背景影响梨树冠层图像信息提取精度的问题,提出一种改进DeepLabV3+的梨树冠层图像分割方法。该方法将注意力机制引入到DeepLabV3+编码部分的主干网络与空洞空间金字塔池化模块之间和解码部分的主干网络之后,重要... 针对杂草和阴影等较复杂背景影响梨树冠层图像信息提取精度的问题,提出一种改进DeepLabV3+的梨树冠层图像分割方法。该方法将注意力机制引入到DeepLabV3+编码部分的主干网络与空洞空间金字塔池化模块之间和解码部分的主干网络之后,重要的特征信息将得到关注,提高模型分割精度的同时保证分割效率。以Y字形棚架梨园为试验对象,通过无人机采集梨树冠层照片,进行冠层分割试验。结果表明,提出的CBAM-DeepLabV3+模型对梨树冠层图像分割的平均交并比、类别平均像素准确率和准确率分别为88.72%、94.56%和96.65%,分割单张图像时间为0.107 s。CBAM-DeepLabV3+模型分割梨树冠层的类别平均像素准确率相比DeepLabV3+和SE-DeepLabV3+分别提高2.28%和0.56%。 展开更多
关键词 梨树冠层 图像分割 deeplabv3+ 注意力机制 深度学习
在线阅读 下载PDF
改进DeepLabV3+的遥感图像建筑物分割 被引量:5
18
作者 郭江 辛月兰 谢琪琦 《激光杂志》 CAS 北大核心 2024年第5期139-145,共7页
针对DeepLabV3+进行遥感图像建筑物分割时存在小目标建筑物漏分、目标建筑物误分以及边界粘合的问题,提出一种改进DeepLabV3+的遥感图像建筑物分割方法。首先,在编码器阶段使用改进的密集空洞金字塔池化DenseASPP模块,获得更大的感受野... 针对DeepLabV3+进行遥感图像建筑物分割时存在小目标建筑物漏分、目标建筑物误分以及边界粘合的问题,提出一种改进DeepLabV3+的遥感图像建筑物分割方法。首先,在编码器阶段使用改进的密集空洞金字塔池化DenseASPP模块,获得更大的感受野和更密集的特征金字塔,并行加入条形池化模块,使主干网络有效利用长距离依赖关系。其次,在解码器阶段引入SE通道注意力模块,加强各通道间的关联性,以获取更丰富的边缘特征。最后,将SE模块优化后的特征与原特征进行融合,增强网络的分割性能。在WHU Building数据集上的实验结果表明,本方法的建筑物分割结果在交并比(Iou)和F1指数上分别达到了92.33%和95.54%。 展开更多
关键词 遥感图像分割 deeplabv3+ 密集金字塔池化 条形池化 注意力机制
在线阅读 下载PDF
基于改进DeepLabv3+与SE注意力机制融合的非结构化道路识别方法 被引量:2
19
作者 金磊 杨晓伟 +3 位作者 张浩 杜勇志 李新鹏 戴春田 《煤炭工程》 北大核心 2024年第7期200-204,共5页
针对露天矿非结构化道路信息无法有效提取或提取精度不高的问题,提出一种基于改进DeepLabv3+网络融合SE注意力机制的露天矿道路识别方法,使用不同采样率的空洞卷积并行采样获取目标图像的高级特征。引入SE注意力模块对采样获取的高级特... 针对露天矿非结构化道路信息无法有效提取或提取精度不高的问题,提出一种基于改进DeepLabv3+网络融合SE注意力机制的露天矿道路识别方法,使用不同采样率的空洞卷积并行采样获取目标图像的高级特征。引入SE注意力模块对采样获取的高级特征和骨干网络提取的低级特征进行特征权衡,以区分不同特征的重要性,提高融合后特征信息的准确性。试验证明,该网络在矿山道路识别中优于其他算法,各项道路识别评价指标均得到提高,可有效识别非结构化的露天矿山道路。 展开更多
关键词 露天矿 道路识别 deeplabv3+ SE注意力机制
在线阅读 下载PDF
基于改进Deeplabv3+模型的果树语义分割研究
20
作者 黎远江 李云伍 +2 位作者 赵颖 台少瑜 王克超 《中国农机化学报》 北大核心 2024年第1期209-216,共8页
针对丘陵山区果园存在地形、光线、边界干扰等环境因素对单株果树难以精准识别分割的问题,提出一种改进的高精度Deeplabv3+语义分割网络模型。首先,该模型以ResNet50为主干网络提取特征,引入金字塔拆分注意力(PSA)机制,获得更清晰的果... 针对丘陵山区果园存在地形、光线、边界干扰等环境因素对单株果树难以精准识别分割的问题,提出一种改进的高精度Deeplabv3+语义分割网络模型。首先,该模型以ResNet50为主干网络提取特征,引入金字塔拆分注意力(PSA)机制,获得更清晰的果树轮廓边界信息;继而,将条纹池化(SP)模块串联到解码部分,通过SP加强特征提取,分别沿水平和垂直维度获取丰富的上下文信息,扩大感受野范围并保证信息完整性和连续性。通过语义分割可得以下结论:在使用Labelme工具进行自主图像标注的丘陵山区果树树冠图像数据集中,果树单株识别分割准确率PA为98.91%,果树分割的平均交并比MIoU为74.94%,相较于PSPNet、UNet、FCN和Deeplabv3+,PA分别提高2.5%、1.88%、1.03%和1.85%,MIoU分别提高10.93%、8.19%、2.78%、5.73%,有较明显的数据提升。该研究成果可为智能农业装备在果园对靶喷药、长势识别等精细化作业方面提供数据支撑。 展开更多
关键词 果树 树冠分割 deeplabv3+ 语义分割 条状池化 注意力机制
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部