期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进密度峰值聚类算法的典型负荷曲线提取
1
作者 彭晓璐 王涛 +3 位作者 卢泽钰 廉杰 赵斌 张谦 《南方电网技术》 北大核心 2025年第9期150-161,共12页
针对现有聚类算法在提取典型负荷曲线时存在的非凸簇识别能力不足和参数敏感性等问题,提出基于改进密度峰值聚类(density peak clustering,DPC)算法的典型负荷曲线提取方法。首先,提出基于局部密度和相对距离的自适应聚类中心选取方法,... 针对现有聚类算法在提取典型负荷曲线时存在的非凸簇识别能力不足和参数敏感性等问题,提出基于改进密度峰值聚类(density peak clustering,DPC)算法的典型负荷曲线提取方法。首先,提出基于局部密度和相对距离的自适应聚类中心选取方法,解决传统DPC算法人为选择聚类中心的主观不确定性问题;其次,定义聚类交叉密度和聚类边界密度两个新参数,提出初始聚类校正策略,有效解决非聚类中心点的分配连带错误问题。通过6个二维数据集、4个多维数据集和1个实际REFIT电气负载测量数据集的对比实验表明,所提改进DPC算法在准确率(ACC)、调整兰德指数(ARI)和Fowlkes-Mallows指数(FMI)3个评价指标上均优于传统DPC、K-means和DBSCAN算法,其中ACC、ARI和FMI平均提升25.40%、46.92%和21.83%。算例结果表明,所提改进DPC算法提取的典型负荷曲线更具代表性,可为电力系统灵活性资源优化调控提供更精准的数据支撑。 展开更多
关键词 负荷聚类 改进dpc算法 聚类交叉密度 聚类边界密度
在线阅读 下载PDF
基于改进的密度峰值算法的K-means算法 被引量:12
2
作者 杜洪波 白阿珍 朱立军 《统计与决策》 CSSCI 北大核心 2018年第18期20-24,共5页
针对传统K-means算法存在的随机选取初始聚类中心和类簇数目需要人为选定,从而导致聚类结果不稳定,容易陷入局部最优解的问题,文章提出了一种基于改进的密度峰值算法(DPC)的K-means算法,该算法首先采用改进的DPC算法来选取初始聚类中... 针对传统K-means算法存在的随机选取初始聚类中心和类簇数目需要人为选定,从而导致聚类结果不稳定,容易陷入局部最优解的问题,文章提出了一种基于改进的密度峰值算法(DPC)的K-means算法,该算法首先采用改进的DPC算法来选取初始聚类中心,弥补了K-means算法初始聚类中心随机选取导致易陷入局部最优解的缺陷;其次运用K-means算法进行迭代,并且引入熵值法计算距离优化聚类。在UCI数据集上的实验表明,该算法得到较好的初始聚类中心和较稳定的聚类结果,并且收敛速度也较快,证明了该算法的可行性。 展开更多
关键词 K-MEANS算法 改进dpc算法 聚类 熵值法 初始聚类中心 优化聚类
在线阅读 下载PDF
噪声背景下基于激光雷达点云数据的分裂导线自动提取与三维重建 被引量:18
3
作者 谢洪平 陈兵 +3 位作者 杜长青 孙铭泽 王磊磊 生红莹 《电网与清洁能源》 2020年第4期23-31,共9页
提出了基于改进DPC算法的具有强抗噪性的分裂导线自动提取与三维重建方法。以噪声背景下的输电线路点云数据为分析对象,首先根据特征分析法滤除输电线路点云中的地物点和杆塔点,并采用K-MEANS聚类方法提取每根电力线点云;然后提出改进DP... 提出了基于改进DPC算法的具有强抗噪性的分裂导线自动提取与三维重建方法。以噪声背景下的输电线路点云数据为分析对象,首先根据特征分析法滤除输电线路点云中的地物点和杆塔点,并采用K-MEANS聚类方法提取每根电力线点云;然后提出改进DPC算法实现分裂子导线点云的聚类和提取;最后采用最小二乘法实现各分裂子导线三维模型重建。并与K-MEANS算法的聚类结果进行了对比,证明了改进DPC算法的强抗噪性和鲁棒性。 展开更多
关键词 分裂导线 dpc算法改进 抗噪性 点云提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部