期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Bert-AutoML的电力文本语义识别算法
被引量:
2
1
作者
张全
赵郭燚
+2 位作者
苏媛
朱元极
任海洋
《电子设计工程》
2024年第4期43-46,51,共5页
由于电力调度过程中存在大量重复性电力文本,导致语义识别结果形式与理想形式差距较大。针对该问题,提出了基于改进Bert-AutoML的电力文本语义识别算法。采用基于词块的粒度划分方式,提取电力文本字粒度语义特征。计算语义序列与命名实...
由于电力调度过程中存在大量重复性电力文本,导致语义识别结果形式与理想形式差距较大。针对该问题,提出了基于改进Bert-AutoML的电力文本语义识别算法。采用基于词块的粒度划分方式,提取电力文本字粒度语义特征。计算语义序列与命名实体数据库中语义的相似度,获取多个对应语义序列,构建电力文本语义识别模型。使用自动机器学习法训练模型文本输入,计算输入向量和电力文本库中向量匹配度。结合字符掩码训练策略,将掩盖的内容与背景相联系,得到最终语义识别结果。实验结果表明,该算法语义识别结果呈现段落-结构形式,排列整齐且简洁,与理想识别结果一致。
展开更多
关键词
改进bert语言表示模型
AutoML
电力文本
语义识别
在线阅读
下载PDF
职称材料
题名
基于改进Bert-AutoML的电力文本语义识别算法
被引量:
2
1
作者
张全
赵郭燚
苏媛
朱元极
任海洋
机构
国家电网有限公司客户服务中心
出处
《电子设计工程》
2024年第4期43-46,51,共5页
基金
国家电网有限公司客户服务中心技术服务项目(659931220003)。
文摘
由于电力调度过程中存在大量重复性电力文本,导致语义识别结果形式与理想形式差距较大。针对该问题,提出了基于改进Bert-AutoML的电力文本语义识别算法。采用基于词块的粒度划分方式,提取电力文本字粒度语义特征。计算语义序列与命名实体数据库中语义的相似度,获取多个对应语义序列,构建电力文本语义识别模型。使用自动机器学习法训练模型文本输入,计算输入向量和电力文本库中向量匹配度。结合字符掩码训练策略,将掩盖的内容与背景相联系,得到最终语义识别结果。实验结果表明,该算法语义识别结果呈现段落-结构形式,排列整齐且简洁,与理想识别结果一致。
关键词
改进bert语言表示模型
AutoML
电力文本
语义识别
Keywords
improved
bert
language representation model
AutoML
electric power text
semantic reco-gnition
分类号
TN081 [电子电信—物理电子学]
TP31 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进Bert-AutoML的电力文本语义识别算法
张全
赵郭燚
苏媛
朱元极
任海洋
《电子设计工程》
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部