提出一种基于粒子概率假设密度滤波器(Sequential Monte Carlo probability hypothesis density filter,SMC-PHDF)的部分可分辨的群目标跟踪算法.该算法可直接获得群而非个体的个数和状态估计.这里群的状态包括群的质心状态和形状.为了...提出一种基于粒子概率假设密度滤波器(Sequential Monte Carlo probability hypothesis density filter,SMC-PHDF)的部分可分辨的群目标跟踪算法.该算法可直接获得群而非个体的个数和状态估计.这里群的状态包括群的质心状态和形状.为了估计群的个数和状态,该算法利用高斯混合模型(Gaussian mixture models,GMM)拟合SMC-PHDF中经重采样后的粒子分布,这里混合模型的元素个数和参数分别对应于群的个数和状态.期望最大化(Expectation maximum,EM)算法和马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)算法分别被用于估计混合模型的参数.混合模型的元素个数可通过删除、合并及分裂算法得到.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明该算法可有效跟踪部分可分辨的群目标.相比EM算法,MCMC算法能够更好地提取群的个数和状态,但它的计算量要大于EM算法.展开更多
粒子滤波器能够给出移动机器人全局定位非线性非高斯模型的近似解.然而,当新感知出现在先验概率的尾部或者与先验相比感知概率太尖时,传统的粒子滤波器会退化导致定位失败.本文提出了一种重要性采样跟中心差分滤波器(cen tra l d iffere...粒子滤波器能够给出移动机器人全局定位非线性非高斯模型的近似解.然而,当新感知出现在先验概率的尾部或者与先验相比感知概率太尖时,传统的粒子滤波器会退化导致定位失败.本文提出了一种重要性采样跟中心差分滤波器(cen tra l d ifference filter,CDF)相结合的新算法,并对测量更新步的加权粒子集应用基于KD-树的加权期望最大(w e igh ted expecta tion m ax im iza tion,W EM)自适应聚类算法获得表示机器人位姿状态后验密度的高斯混合模型(G au ssian m ixtu re m od e l,GMM).实验结果表明,新方法提高了定位准确率,降低了计算复杂度.展开更多
文摘提出一种基于粒子概率假设密度滤波器(Sequential Monte Carlo probability hypothesis density filter,SMC-PHDF)的部分可分辨的群目标跟踪算法.该算法可直接获得群而非个体的个数和状态估计.这里群的状态包括群的质心状态和形状.为了估计群的个数和状态,该算法利用高斯混合模型(Gaussian mixture models,GMM)拟合SMC-PHDF中经重采样后的粒子分布,这里混合模型的元素个数和参数分别对应于群的个数和状态.期望最大化(Expectation maximum,EM)算法和马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)算法分别被用于估计混合模型的参数.混合模型的元素个数可通过删除、合并及分裂算法得到.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明该算法可有效跟踪部分可分辨的群目标.相比EM算法,MCMC算法能够更好地提取群的个数和状态,但它的计算量要大于EM算法.
文摘粒子滤波器能够给出移动机器人全局定位非线性非高斯模型的近似解.然而,当新感知出现在先验概率的尾部或者与先验相比感知概率太尖时,传统的粒子滤波器会退化导致定位失败.本文提出了一种重要性采样跟中心差分滤波器(cen tra l d ifference filter,CDF)相结合的新算法,并对测量更新步的加权粒子集应用基于KD-树的加权期望最大(w e igh ted expecta tion m ax im iza tion,W EM)自适应聚类算法获得表示机器人位姿状态后验密度的高斯混合模型(G au ssian m ixtu re m od e l,GMM).实验结果表明,新方法提高了定位准确率,降低了计算复杂度.