期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
基于改进集合经验模态分解和强化视觉Transformer模型的风电机组故障预警
1
作者 许伯强 王彪 +1 位作者 孙丽玲 尹彦博 《电工技术学报》 北大核心 2025年第20期6537-6551,共15页
现有基于数据采集与监视控制系统(SCADA)数据的风电机组故障预警方法往往只针对风电机组的某一位置或者某一类型故障,无法对风电机组整体进行较为全面的预警。针对这一问题,该文提出了基于改进集合经验模态分解(EEMD)和强化的视觉转换器... 现有基于数据采集与监视控制系统(SCADA)数据的风电机组故障预警方法往往只针对风电机组的某一位置或者某一类型故障,无法对风电机组整体进行较为全面的预警。针对这一问题,该文提出了基于改进集合经验模态分解(EEMD)和强化的视觉转换器(ViT)模型的风电机组故障预警方法。首先,对EEMD算法进行改进,分解得到的数据包含不同时间尺度的特征信息,且使得分解过程中不发生信息泄露。采用改进的EEMD算法解构风电机组SCADA多维数据之后,构建反映风电机组实时状态的特征矩阵。然后,结合非对称卷积模块对ViT模型进行强化,并加入可变形注意力模块,在降低计算复杂度的同时使得模型可以充分捕捉不同维度与时间尺度的风电机组特征。最后,将特征矩阵输入强化的ViT模型以获得预测结果,与实际值对比得到残差矩阵,依此进行风电机组故障的预警。经风电机组实际运行SCADA数据验证,该文提出的风电机组故障预警方法准确有效,并可通过残差矩阵进一步辨识风电机组发生的故障类型。 展开更多
关键词 风电机组 数据采集与监视控制系统(SCADA)数据 故障预警 改进集合经验模态分解(EEMD) 强化ViT模型
在线阅读 下载PDF
基于改进的集合经验模态分解的爆破振动信号趋势项消除方法 被引量:10
2
作者 李晨 梁书锋 +2 位作者 刘传鹏 程健 刘殿书 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第6期636-641,共6页
针对实测爆破振动信号中存在的趋势项干扰问题,基于改进的集合经验模态分解,提出一种趋势项消除方法,并进行了模拟信号的仿真计算和爆破振动信号的实例分析.信号仿真计算结果显示:对于持续振动信号,该方法的趋势项提取结果与已有的基于... 针对实测爆破振动信号中存在的趋势项干扰问题,基于改进的集合经验模态分解,提出一种趋势项消除方法,并进行了模拟信号的仿真计算和爆破振动信号的实例分析.信号仿真计算结果显示:对于持续振动信号,该方法的趋势项提取结果与已有的基于经验模态分解或集合经验模态分解的趋势项消除方法较为接近;但当测试信号呈间歇振动时,该方法对趋势项的提取更为充分,体现了其对分段爆破振动信号中趋势项消除的优越性和适用性.同时,爆破振动速度信号的实例分析验证了该方法在实际应用过程中的可靠性. 展开更多
关键词 爆破振动 趋势项 改进集合经验模态分解 均值比 固有模态函数
在线阅读 下载PDF
基于改进经验模态分解的雷达生命信号检测 被引量:28
3
作者 刘震宇 陈惠明 +1 位作者 陆蔚 李光平 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第12期171-178,共8页
从线性调频连续波(FMCW)雷达中提取的生命信号包含大量的噪声,为了获得高信噪比的呼吸和心跳信号,提出了一种基于改进的自适应集合经验模态分解(ICEEMDAN)的生命信号检测方法。该方法首先对FMCW毫米波雷达获取的生命信号进行ICEEMDAN分... 从线性调频连续波(FMCW)雷达中提取的生命信号包含大量的噪声,为了获得高信噪比的呼吸和心跳信号,提出了一种基于改进的自适应集合经验模态分解(ICEEMDAN)的生命信号检测方法。该方法首先对FMCW毫米波雷达获取的生命信号进行ICEEMDAN分解,得到若干个固有模态函数(IMF)分量,然后利用IMF分量滤波器选择频率峰值在呼吸和心跳频带范围内的IMF分量,最后根据与雷达生命信号的相关性从滤波的结果中选择IMF分量重构呼吸和心跳信号。实验结果表明,所提出的方法能够准确地检测到心跳和呼吸信号,提取得到的呼吸和心跳信号具有良好的信噪比。 展开更多
关键词 线性调频连续波雷达 生命信号 经验模态分解 改进的自适应集合经验模态分解
在线阅读 下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:4
4
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进的自适应噪声完备集合经验模态分解 样本熵 蜣螂优化算法
在线阅读 下载PDF
基于ICEEMDAN-PE-GDBO-LSSVM的风电功率预测
5
作者 汪繁荣 张旭东 《现代电子技术》 北大核心 2025年第10期57-62,共6页
随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM... 随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM)的组合模型。首先使用ICEEMDAN对风电数据进行分解,从而降低复杂度;之后根据PE对分解后得到的各分量进行聚合,再使用GDBO算法对LSSVM的关键参数进行寻优,以得到最佳预测模型;最后使用优化模型对各聚合分量分别进行预测和叠加,得到总的预测结果。基于国内风电场数据集进行实验验证,结果表明所提方法有较高的预测精度,均方根误差比单一的LSSVM模型低61.39%,在工程实践中具有更为广阔的应用前景。 展开更多
关键词 风电功率预测 自适应噪声完全集合经验模态分解 改进的蜣螂优化算法 排列熵 改进的完全集合经验模态分解 最小支持二乘向量机 分量聚合
在线阅读 下载PDF
基于ICEEMDAN的微电网混合储能容量配置 被引量:2
6
作者 刘旭民 张彦 刘晓波 《南方电网技术》 北大核心 2025年第1期140-149,共10页
针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中... 针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中可再生能源出力和用电负荷波动导致的联络线功率波动问题。该方法通过对微电网中不平衡功率进行功率信号分解,并分析确定高频分量和低频分量,实现功率信号重构。针对不同储能系统技术特点,采用钠硫电池平抑低频分量,采用超级电容平抑高频分量。然后,通过建立以储能初始投资和维护成本最小为目标的HESS容量优化配置模型,利用商业求解器GUROBI求解混合储能配置方案。基于某并网型微电网进行算例分析,结果表明配置HESS能有效平抑微电网联络线功率波动,且该方法具有较好的经济性。算例分析结果验证了所提方法的有效性和可行性。 展开更多
关键词 改进自适应噪声完备集合经验模态分解(ICEEMDAN) 微电网 混合储能 容量优化配置 GUROBI
在线阅读 下载PDF
基于改进EEMD与混沌振子的配电网故障选线 被引量:18
7
作者 侯思祖 郭威 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第4期77-87,共11页
提出改进的集合经验模态分解(MEEMD)和混沌振子相结合的电网故障微弱信号检测方法。首先,建立神经网络预测模型,通过神经网络对配网各线路零序电流进行短时预测,滤除故障信号中的背景信号;其次,为了检测配网发生单相接地故障后微弱的5... 提出改进的集合经验模态分解(MEEMD)和混沌振子相结合的电网故障微弱信号检测方法。首先,建立神经网络预测模型,通过神经网络对配网各线路零序电流进行短时预测,滤除故障信号中的背景信号;其次,为了检测配网发生单相接地故障后微弱的5次谐波信号,提出结合多尺度排列熵和完备集合经验模态分解(CEEMD)改进的改进的集合经验模态分解算法;处理已经滤除背景信号的故障信号,提取其第一固有模态函数作为混沌振子的输入。混沌振子对和内驱动力信号同频的外策动力信号有较高的敏感性,通过混沌振子输出的相图完成电网故障选线。 展开更多
关键词 多尺度排列熵 改进集合经验模态分解 混沌振子 相图
在线阅读 下载PDF
基于双层鲁棒控制的风电场储能集群出力调控策略
8
作者 邢超 肖家杰 +3 位作者 李培强 毛志宇 奚鑫泽 何鑫 《电网技术》 北大核心 2025年第5期1887-1897,I0042,共12页
为有效平滑风电出力和实现储能系统安全经济运行,提出一种储能集群双层鲁棒控制策略。系统功率分配层,改进集合经验模态分解(improved ensemble empirical mode decomposition,IEEMD),推导出逐次解析高频波动功率的数学模型,并提出基于... 为有效平滑风电出力和实现储能系统安全经济运行,提出一种储能集群双层鲁棒控制策略。系统功率分配层,改进集合经验模态分解(improved ensemble empirical mode decomposition,IEEMD),推导出逐次解析高频波动功率的数学模型,并提出基于并网标准的分解阶数自适应确定流程,能较好解析局部风功率以减小储能功率中混叠的低频成分,降低其功率需求和运行负担,同时,解决了传统方法需要完全分解功率信号导致效率低的问题。储能运行层,考虑储能单元荷电状态(state of charge,SOC)的差异性,提出基于功率分布区间的储能单元轮换控制策略,在维持储能单元SOC一致的同时可减小该过程充放电动作调整次数。在此基础上,提出基于3组储能集群的协调控制策略,有效提升分组控制模式下对充放电能量不平衡的鲁棒性,使各储能单元均能运行于最优放电深度(depth of discharge,DOD)以充分利用其寿命和延长使用寿命。最后,采用某50 MW风电场数据验证了所提策略的有效性和优越性。 展开更多
关键词 风功率波动 改进集合经验模态分解 SOC一致性 电池寿命 储能集群
在线阅读 下载PDF
基于ICEEMDAN-SST的定点形变信号去噪:以宜昌地震台为例
9
作者 冷崇标 张辉 +1 位作者 康波 霍玉龙 《科学技术与工程》 北大核心 2025年第25期10579-10585,共7页
定点形变仪器观测精度高,易受仪器工作状态以及外部环境变化影响而产生噪声,这些噪声的存在不利于地震信息的提取。为了消除定点形变信号中的噪声,提出了一种结合改进的自适应噪声完备集合经验模态分解(improved complete ensemble empi... 定点形变仪器观测精度高,易受仪器工作状态以及外部环境变化影响而产生噪声,这些噪声的存在不利于地震信息的提取。为了消除定点形变信号中的噪声,提出了一种结合改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和同步压缩变换(synchrosqueezing transform,SST)的去噪模型。该模型通过对含噪声的信号进行ICEEMDAN分解获得若干固有模态函数(intrinsic mode function,IMF)分量;然后计算各分量的样本熵(sample entropy,SE),并结合方差贡献率、相关系数,划分出有效分量、含噪声分量;最后,利用SST对含噪声分量进行去噪,并与有效分量重构,获得去噪后的纯净信号。通过仿真实验以及宜昌地震台不同类型实测信号分析表明,ICEEMDAN-SST模型能有效地区分含噪声分量、有效分量,去噪后的信号还原度较高,固体潮形态清晰,去噪效果优于S-G(Savitzky-Golay)滤波、卡尔曼滤波、小波去噪等传统方法,适用于多种定点形变仪器的不同类型噪声的压制。ICEEMDAN-SST模型的提出对于定点形变仪器地震信息的提取有着重要意义,有助于这类观测仪器在地震分析预报中发挥更大的作用。 展开更多
关键词 样本熵 改进的自适应噪声完备集合经验模态分解 同步压缩变换 定点形变 去噪
在线阅读 下载PDF
低信噪比下基于ICEEMDAN和HHO的协作频谱感知方法
10
作者 王全全 谢松霖 +2 位作者 顾志豪 吴城坤 张更新 《系统工程与电子技术》 北大核心 2025年第9期3109-3116,共8页
为解决频谱感知在低信噪比下性能受限的问题,提出了一种基于改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和哈里斯鹰优化(Harris hawks optimization... 为解决频谱感知在低信噪比下性能受限的问题,提出了一种基于改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和哈里斯鹰优化(Harris hawks optimization,HHO)的协作频谱感知方法。首先为获得固有模态函数(intrinsic mode function,IMF)分量,对次用户上传信号进行ICEEMDAN处理,其次计算已知波形的主用户(primary user,PU)信号与各IMF分量之间的相关系数,然后提取合适的IMF分量累加得到重构信号。接着用重构信号的平均能量值作为特征值训练支持向量机(support vector machine,SVM),并通过HHO优化SVM参数,最后用优化后的SVM模型对PU是否存在进行检测。实验结果表明,所提方法在低信噪比下检测概率、检测准确率均较高,感知性能较好。 展开更多
关键词 协作频谱感知 改进的自适应噪声完备集合经验模态分解 降噪 哈里斯鹰优化 支持向量机
在线阅读 下载PDF
基于ICEEMDAN与小波包分解的脉搏信号联合去噪 被引量:16
11
作者 李诗楠 凌威 +1 位作者 梁竹关 丁洪伟 《电子测量技术》 北大核心 2022年第18期41-48,共8页
针对脉搏信号非线性、非平稳,且难以去噪的问题,提出了一种基于改进的自适应噪声集合经验模态分解(ICEEMDAN)与小波包分解(WPD)相结合的联合去噪方法,对采集的脉搏信号进行去噪处理。首先对噪声信号进行ICEEMDAN模态分解,产生一系列的... 针对脉搏信号非线性、非平稳,且难以去噪的问题,提出了一种基于改进的自适应噪声集合经验模态分解(ICEEMDAN)与小波包分解(WPD)相结合的联合去噪方法,对采集的脉搏信号进行去噪处理。首先对噪声信号进行ICEEMDAN模态分解,产生一系列的固有模态函数(IMF),再将这些IMF分量分别与原信号进行相关系数的计算,比较相关系数的值,然后进行信号的重组,最后对重组后的信号进行小波包分解,提取得到降噪后的脉搏信号。利用仿真数据、实际采集的脉搏信号进行实验分析,将该方法与集合经验模态分解(EEMD)进行了对比,并比较了这两种方法的信噪比(SNR)和均方根误差(RMSE)。实验结果表明:基于ICEEMDAN-WPD的联合去噪方法能更有效地去除噪声,并更好地保留脉搏信号的特征。 展开更多
关键词 脉搏信号 改进的自适应噪声集合经验模态分解 小波包分解 相关系数 联合去噪
在线阅读 下载PDF
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型 被引量:1
12
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备集合经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
在线阅读 下载PDF
基于ICEEMDAN和分布熵的SS-Y伸缩仪信号随机噪声压制方法 被引量:3
13
作者 吴林斌 《大地测量与地球动力学》 CSCD 北大核心 2024年第4期429-435,共7页
结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量... 结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量的分布熵值,根据不同分布熵值的大小和表征的分量信号混乱程度,有针对性地对各IMF进行取舍;最后进行线性重构。设计仿真信号去噪实验和SS-Y伸缩仪信号去噪实验,结果表明,基于ICEEMDAN-DistEn去噪模型的伸缩仪信号重构还原度较好,去噪效果显著,明显优于CEEMDAN-DistEn、小波去噪和卡尔曼滤波等去噪模型。 展开更多
关键词 SS-Y伸缩仪 随机噪声压制 改进的自适应噪声完备集合经验模态分解 分布熵 信噪比
在线阅读 下载PDF
基于校准窗口集成与耦合市场特征的可解释双层日前电价预测 被引量:7
14
作者 刘慧鑫 沈晓东 +3 位作者 魏泽涛 刘友波 刘俊勇 白元宝 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1272-1285,I0003,共15页
随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在... 随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在工程应用中可信度偏低。针对上述问题,该文提出一种考虑校准窗口集成与耦合市场特征的可解释双层日前电价预测框架。内层框架为基于改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)的择优预测,首先分解原始电价序列,然后应用Lasso估计回归(lassoestimated autoregressive,LEAR)、长期和短期时间序列网络(long-term and short-term time-series networks,LSTNet)、卷积神经网络-长短记忆神经网络(convolutionalneuralnetworks-longshort termmemory,CNN-LSTM)、移动平均(autoregressive integrated moving average,ARIMA)和核极限学习机(kernel extreme learning machines,KELM)模型预测子序列并选择最优预测算法。外层框架为基于贝叶斯模型平均(bayes modelaveraging,BMA)的校准窗口集成预测,针对每个不同校准窗口长度数据集下的预测分配权重并集成得到预测电价。最后,通过可解释方法沙普利加性解释模型(shapley additiveexplanations,SHAP)分析耦合市场特征如何影响预测电价。该文通过北欧电力市场数据集的算例分析证明了所提算法的优越性和校准窗口集成方案的有效性。 展开更多
关键词 校准窗口集成 耦合市场特征 双层预测框架 改进自适应噪声完备集合经验模态分解(ICEEMDAN) 贝叶斯模型平均(BMA) 沙普利加性解释模型(SHAP)
在线阅读 下载PDF
基于ICEEMDAN和共振解调的轴承故障检测方法 被引量:1
15
作者 唐斌 池茂儒 +2 位作者 赵明花 李大柱 许文天 《铁道机车车辆》 北大核心 2024年第4期84-91,共8页
对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度... 对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度图法确定共振频带,然后以此设计相应滤波器进行滤波;使用形态学滤波方法进行共振信号的解调,然后再利用FFT得到轴承的故障特征频谱图。内、外圈故障振动数据验证结果表明,该方法能够检测出滚动轴承的故障。 展开更多
关键词 滚动轴承 带自适应噪声的改进完全集合经验模态分解(ICEEMDAN) 共振解调 快速峭度图 形态学滤波
在线阅读 下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究 被引量:6
16
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(ICEEMDAN) 多尺度排列熵 信号降噪
在线阅读 下载PDF
基于ICEEMDAN-DCN-Transformer的短期电力负荷预测 被引量:2
17
作者 芦志凡 赵倩 《沈阳工业大学学报》 CAS 北大核心 2024年第4期388-396,共9页
针对传统负荷预测方法易受复杂环境因素影响的问题,提出了基于ICEEMDAN-DCN-Transformer的短期电力负荷组合预测模型,该模型将电力负荷数据通过ICEEMDAN方法分解为若干个IMF和一个Res函数,考虑复杂环境因素的影响,将分解后各分量与环境... 针对传统负荷预测方法易受复杂环境因素影响的问题,提出了基于ICEEMDAN-DCN-Transformer的短期电力负荷组合预测模型,该模型将电力负荷数据通过ICEEMDAN方法分解为若干个IMF和一个Res函数,考虑复杂环境因素的影响,将分解后各分量与环境特征并行输入到DCN-Transformer中进行预测,并将各组预测数据线性相加得到完整的预测结果。以泉州市电力负荷历史数据为基础进行实验,建立4种单一预测模型和3种组合预测模型作为对比模型,对该地10 d、240 h的电力负荷序列加以预测。结果表明,相较于传统算法,所提算法可以显著提高负荷预测的精度并有效降低误差评价指标值,为电力系统的安全运行和规划制定提供理论依据。 展开更多
关键词 电力负荷预测 改进型完全自适应噪声集合经验模态分解算法 深度交叉网络 预测精度 短期负荷 组合预测模型 误差评价
在线阅读 下载PDF
深孔台阶爆破近区振动信号预处理与时频特征分析
18
作者 张文涛 汪海波 +4 位作者 高朋飞 王梦想 杨帆 吕闹 宗琦 《振动与冲击》 EI CSCD 北大核心 2024年第24期178-189,共12页
深孔台阶爆破近区振动信号中常含有趋势项和高频噪声导致信号畸变失真,严重影响时频特征分析。针对此问题,构建了改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,... 深孔台阶爆破近区振动信号中常含有趋势项和高频噪声导致信号畸变失真,严重影响时频特征分析。针对此问题,构建了改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)算法结合基于广义最小最大非凸(generalized minimax concave, GMC)惩罚项的稀疏降噪法与稀疏化基线估计消噪(baseline estimation and de-noising with sparsity, BEADS)算法的联合预处理方法。通过仿真信号验证该方法的可行性。将其应用于实际深孔台阶爆破近区振动信号的处理,并提取重构信号的时频特征,结果表明:在仿真信号试验中,该文构建的预处理方法能在有效保留信号真实成分的前提下消除高频噪声和低频趋势项的影响,相较于其他5种方法重构信号信噪比更高、均方根误差更小。在实测信号分析中,预处理后信号波形恢复正常,高频噪声成分被抑制,低频段频谱更清晰。时频特征分析发现,深孔台阶爆破近区振动信号主频较低,能量主要集中在25~150 Hz范围内,极低频和高频能量占比较少。根据时频特征分析结果结合爆破安全规程对爆破参数设计给出了建议。研究结果对爆破振动信号精确分析及制定爆破振动控制措施具有重要意义。 展开更多
关键词 爆破近区振动信号 预处理 时频分析 改进的自适应噪声完备集合经验模态分解(ICEEMDAN) 基于广义最小最大非凸(GMC)惩罚项的稀疏降噪法 稀疏化基线估计消噪(BEADS)
在线阅读 下载PDF
基于IEMD和GA-WNN的断路器分合闸线圈故障诊断方法 被引量:14
19
作者 李天辉 庞先海 +3 位作者 范辉 甄利 顾朝敏 董驰 《中国电力》 CSCD 北大核心 2022年第5期111-121,共11页
真空断路器二次回路或操动机构运行状态能通过电流曲线特征反映。首先,通过对真空断路器分合闸线圈铁心卡涩、电压异常(过高或过低)和击穿3种常见故障进行实验室模拟,创建了故障电流曲线特征库。其次,利用故障电流信号经过经验模态分解... 真空断路器二次回路或操动机构运行状态能通过电流曲线特征反映。首先,通过对真空断路器分合闸线圈铁心卡涩、电压异常(过高或过低)和击穿3种常见故障进行实验室模拟,创建了故障电流曲线特征库。其次,利用故障电流信号经过经验模态分解后的经验模态分量中的能量密度乘对应平均周期为恒定常数的性质,提出一种改进经验模态分解方法来提取分合闸线圈电流特征值,并将其作为小波神经网络的输入样本集。并在此基础上,提出一种改进遗传算法与小波神经网络结合的断路器故障诊断方法。该方法利用改进遗传算法对小波神经网络参数进行寻优,旨在解决小波神经网络参数敏感问题,进而提高诊断算法收敛速度和故障诊断准确率。仿真结果表明:与传统小波神经网络诊断方法相比,利用遗传算法改进的小波神经网络方法诊断正确率高达91%,提高了10个百分点。 展开更多
关键词 断路器 分合闸线圈 改进集合模态分解 改进小波神经网络 故障诊断
在线阅读 下载PDF
基于MEEMD和GA-SVM的列车车轮多边形故障识别方法 被引量:15
20
作者 陈博 陈光雄 《噪声与振动控制》 CSCD 2018年第3期157-161,197,共6页
根据列车车轮振动信号的非平稳特性,提出一种基于改进的集合经验模态分解(MEEMD)和遗传算法支持向量机(GA-SVM)的诊断方法,用于识别车轮多边形故障。该方法对车轮轴箱垂向振动信号进行MEEMD分解,依据各固有模态函数(IMF)分量的峭度值和... 根据列车车轮振动信号的非平稳特性,提出一种基于改进的集合经验模态分解(MEEMD)和遗传算法支持向量机(GA-SVM)的诊断方法,用于识别车轮多边形故障。该方法对车轮轴箱垂向振动信号进行MEEMD分解,依据各固有模态函数(IMF)分量的峭度值和能量值选取出主要IMF分量。利用希尔伯特变换求取主要IMF分量的包络谱,并计算包络谱熵。将包络谱熵值归一化后作为特征向量输入GA-SVM中进行训练和识别。对实测信号进行分析的结果表明该方法能有效识别出车轮多边形故障,识别准确率可达到95%。 展开更多
关键词 振动与波 车轮多边形识别 改进集合经验模态分解 遗传算法支持向量机 包络谱熵
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部