期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于改进的集合经验模态分解的爆破振动信号趋势项消除方法 被引量:10
1
作者 李晨 梁书锋 +2 位作者 刘传鹏 程健 刘殿书 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第6期636-641,共6页
针对实测爆破振动信号中存在的趋势项干扰问题,基于改进的集合经验模态分解,提出一种趋势项消除方法,并进行了模拟信号的仿真计算和爆破振动信号的实例分析.信号仿真计算结果显示:对于持续振动信号,该方法的趋势项提取结果与已有的基于... 针对实测爆破振动信号中存在的趋势项干扰问题,基于改进的集合经验模态分解,提出一种趋势项消除方法,并进行了模拟信号的仿真计算和爆破振动信号的实例分析.信号仿真计算结果显示:对于持续振动信号,该方法的趋势项提取结果与已有的基于经验模态分解或集合经验模态分解的趋势项消除方法较为接近;但当测试信号呈间歇振动时,该方法对趋势项的提取更为充分,体现了其对分段爆破振动信号中趋势项消除的优越性和适用性.同时,爆破振动速度信号的实例分析验证了该方法在实际应用过程中的可靠性. 展开更多
关键词 爆破振动 趋势项 改进集合经验模态分解 均值 固有模态函数
在线阅读 下载PDF
基于集合经验模态分解和排列熵的核电厂信号降噪研究 被引量:1
2
作者 王雨辰 李鼎 +1 位作者 胡玥 孙晨雨 《核科学与工程》 CAS CSCD 北大核心 2024年第1期98-107,共10页
本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实... 本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实测信号中的有用信号和噪声信号的区分。对于后者,采用改进的小波软阈值降噪法进行降噪。最后,根据排列熵筛分后的有用信号和改进的小波软阈值降噪后的噪声信号进行重构,得到降噪后的信号。另外,本文也采用了主流的经验模态分解和局部均值分解对该信号进行了处理,并将分析结果进行对比。对比结果表明,基于本文所提方法得到的降噪后信号排列熵较小,表明降噪效果要优于以上两种方法。 展开更多
关键词 信号降噪 经验模态分解 局部均值分解 集合经验模态分解 排列熵
在线阅读 下载PDF
基于改进ELMD和sinc插值校正的电压闪变参数检测 被引量:3
3
作者 奚鑫泽 邢超 +4 位作者 覃日升 郭成 周鑫 和鹏 孟贤 《科学技术与工程》 北大核心 2023年第8期3323-3329,共7页
新能源发电并网及大量非线性、冲击性负荷的应用造成的电压波动与闪变已成为不可忽视的电能质量问题。为实现非稳态电压闪变参数的准确提取,提出一种基于改进集合局部均值分解(ensemble local mean decomposition,ELMD)和sinc插值校正... 新能源发电并网及大量非线性、冲击性负荷的应用造成的电压波动与闪变已成为不可忽视的电能质量问题。为实现非稳态电压闪变参数的准确提取,提出一种基于改进集合局部均值分解(ensemble local mean decomposition,ELMD)和sinc插值校正的闪变参数分析方法,通过sinc插值法替代局部均值分解法中移动平均插值,并利用噪声的统计特性构建改进集合局部均值分解方法,基于改进ELMD将非稳态电压闪变信号分解成一系列的本征模函数(intrinsic mode function,IMF)分量,然后对各分量进行Hilbert变换获得非稳态电压闪变包络信号的瞬时幅值和瞬时频率,最后针对局部均值分解(local mean decomposition,LMD)测量大于12 Hz闪变分量幅值误差较大的局限性,构建基于sinc插值的幅值误差校正模型,据此实现非稳态电压闪变参数的完整检测与分析。通过仿真和实验证明所提出的改进ELMD和sinc插值校正闪变检测相比传统基于LMD的闪变检测方法具有更高的准确度,受电网基波频率波动的影响很小,抗干扰性强,能有效实现非稳态电压闪变包络参数准确检测。 展开更多
关键词 电压闪变 改进集合局部均值分解(elmd) sinc插值 误差校正
在线阅读 下载PDF
基于多层信号分解的混凝土拱坝变形监测模型
4
作者 王子轩 欧斌 +3 位作者 陈德辉 杨石勇 赵定柱 傅蜀燕 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第6期1-9,共9页
为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模... 为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模态分量(IMF)个数能够准确描述大坝变形.然后,对于高频IMF分量,采用变分模态分解(VMD)进行二次分解,并利用偏最小二乘法(PLS)分析变形序列影响因子,以提取最佳的IMF分量作为后续模型的输入因子.最后,利用改进的共生生物搜索算法(ISOS)结合长短期记忆神经网络(LSTM)进行大坝变形的准确预测.研究结果表明:相较于单层信号处理,本文通过二次信号处理可以显著提升模型的预测精度;对二次分解后的IMFs分量进行PLS筛选可以有效避免模型的冗余性,提高计算效率;相较于各对比模型,本文模型在各测点上均具有较好的预测精度和稳定性.本文提出的模型能够深入挖掘大坝监测数据中的拓扑关系,有效保留数据中的高频有用信息,从而提高预测的准确性和平滑性,展示出较好的预测精度和泛化能力. 展开更多
关键词 大坝变形 自适应噪声完全集合经验模态分解 样本熵 K-均值聚类算法 改进的共生生物搜索算法 变分模态分解
在线阅读 下载PDF
大坝变形多尺度分析ELMD-LSSVM预测模型 被引量:3
5
作者 王奉伟 周昀琦 +1 位作者 周世健 罗亦泳 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2016年第12期1475-1479,共5页
针对局部均值分解LMD实现过程中存在的模式混淆现象,利用局部均值分解的原理,提出一种结合总体局部均值分解(ELMD)与最小二乘支持向量机(LSSVM)方法的多尺度大坝变形预测模型.利用ELMD方法对大坝变形序列进行分解,得到其PF分量,利用最... 针对局部均值分解LMD实现过程中存在的模式混淆现象,利用局部均值分解的原理,提出一种结合总体局部均值分解(ELMD)与最小二乘支持向量机(LSSVM)方法的多尺度大坝变形预测模型.利用ELMD方法对大坝变形序列进行分解,得到其PF分量,利用最小二乘支持向量机进行外推预测,再把各PF分量的预测结果进行叠加重构,得到大坝变形预测值.通过实例验证分析,比较多元回归分析、LSSVM和ELMD-LSSVM三种模型在大坝变形监测数据处理中的拟合和预测结果.研究结果表明:ELMD-LSSVM方法能够减弱模态混叠现象的影响,充分发掘数据本身所蕴含的物理机制和物理规律,为大坝变形多尺度预测分析奠定较好的基础. 展开更多
关键词 总体局部均值分解elmd 最小二乘支持向量机LSSVM 多尺度 变形分析
在线阅读 下载PDF
改进LMD和排列熵的滚动轴承故障诊断 被引量:8
6
作者 李巧艺 单奇 +1 位作者 陈跃威 叶运广 《机械设计与制造》 北大核心 2018年第4期51-53,57,共4页
针对滚动轴承故障振动信号的复杂特性和局部均值分解(Local Mean Decomposition,LMD)方法存在的端点效应问题,提出了基于振动信号自相似性对左右端点两侧延拓来抑制端点效应问题的改进LMD、排列熵(Permutation Entropy,PE)及优化K-均值... 针对滚动轴承故障振动信号的复杂特性和局部均值分解(Local Mean Decomposition,LMD)方法存在的端点效应问题,提出了基于振动信号自相似性对左右端点两侧延拓来抑制端点效应问题的改进LMD、排列熵(Permutation Entropy,PE)及优化K-均值聚类算法相结合的轴承故障诊断方法。首先通过改进LMD将非线性、非平稳的原始故障振动信号分解出一系列的乘积函数(Production Function,PF)分量,对包含主要故障信息的PF分量提取PE值作为故障特征分量,在提取特征量的基础上,最后采用优化后的K-均值聚类算法对故障类型进行识别分类。将该方法应用在滚动轴承实验数据,实验结果表明该方法可以准确、有效的实现滚动轴承的故障诊断。 展开更多
关键词 改进局部均值分解 排列熵 端点效应 自相似性 滚动轴承 故障诊断
在线阅读 下载PDF
改进LMD和LS-SVM在小电流接地故障选线中的应用 被引量:2
7
作者 曹丽芳 赵朋程 +4 位作者 陈颖 王玉田 张淑清 张航飞 徐剑涛 《计量学报》 CSCD 北大核心 2016年第6期632-637,共6页
提出一种改进的局部均值分解(LMD)和最小二乘支持向量机(LS-SVM)相结合的小电流接地故障选线新方法。针对LMD存在端点效应的缺陷,提出了一种最小平方距离相关的改进算法,对端点效应进行了有效的抑制;LS-SVM在SVM基础上,用二次... 提出一种改进的局部均值分解(LMD)和最小二乘支持向量机(LS-SVM)相结合的小电流接地故障选线新方法。针对LMD存在端点效应的缺陷,提出了一种最小平方距离相关的改进算法,对端点效应进行了有效的抑制;LS-SVM在SVM基础上,用二次损失函数代替不敏感损失函数,用等式约束代替不等式约束,降低了计算复杂度。与径向基神经网络(RBF)方法的分类效果对比,验证了LS-SVM在非线性模式识别方面的优势。实验表明该方法能够很好地选出故障线路,为小电流接地故障选线提供了一种有效的新方法。 展开更多
关键词 计量学 故障选线 小电流接地 局部均值分解 端点效应 LMD改进算法 最小二乘支持向量机
在线阅读 下载PDF
联合CEF-MOMEDA的风机高速端轴承潜隐性故障敏感信息提取方法
8
作者 蔡敏 张强 +2 位作者 秦波 张海平 罗权毅 《机电工程》 北大核心 2025年第8期1428-1439,共12页
在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首... 在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首先,将拾取的振动数据由变分模态分解为若干个表征原数据不同成分的本征模分量;然后,根据上述分量能量的变化,量化、评估所包含的潜隐性故障占比,筛选并提取敏感成分后对故障信号进行了重构;接着,利用多点最优最小熵解卷积对重构后的数据进行了有效成分增强提取;最后,将上述能量波动评价准则与多点最优最小熵解卷积联合提取的敏感信息数据作为深度置信网络(DBN)的输入,构建了滚动轴承状态智能辨识模型,采用现场实验与凯斯西储大学(CWRU)数据集对CEF-MOMEDA的方法进行了验证。研究结果表明:基于CEF-MOMEDA-DBN的模型在风机滚动轴承诊断中的故障识别率更高;在凯斯西储大学数据集上,与集合经验模态分解(EEMD)、局部均值分解(LMD)相比,CEF-MOMEDA方法联合能量波动准则提取敏感信息数据并作为智能辨识模型的输入后,故障识别率分别提高了2.5%和1.25%。该方法能够有效提高故障识别的准确率,具有更强的实用性和泛化性。 展开更多
关键词 MW级半直驱风电机组 滚动轴承故障诊断 敏感成分联合提取 相关能量波动 多点最优最小熵解卷积 深度置信网络 集合经验模态分解 局部均值分解
在线阅读 下载PDF
基于LMD-QPSO-LSTM的离散再制造系统动态瓶颈预测方法
9
作者 汪家炜 王艳 +1 位作者 纪志成 刘相 《现代制造工程》 北大核心 2025年第6期150-160,57,共12页
离散再制造业普遍存在影响生产效率的瓶颈问题,传统的静态瓶颈识别方法难以有效解决复杂再制造环境中的动态瓶颈漂移问题。针对这一现象,提出了一种基于局部均值分解(Local Mean Decomposition, LMD)方法结合长短期记忆(Long Short-Term... 离散再制造业普遍存在影响生产效率的瓶颈问题,传统的静态瓶颈识别方法难以有效解决复杂再制造环境中的动态瓶颈漂移问题。针对这一现象,提出了一种基于局部均值分解(Local Mean Decomposition, LMD)方法结合长短期记忆(Long Short-Term Memory, LSTM)网络并利用改进量子粒子群(Quantum Particle Swarm Optimization, QPSO)算法优化的LMD-QPSO-LSTM动态瓶颈预测模型。首先,采用机器能耗属性定义动态瓶颈指数,并基于LMD方法分解瓶颈序列以降低数据的波动性。其次,引入注意力机制(Attention Mechanism, AM)来增强LSTM网络的学习能力,同时采用改进的QPSO算法优化LSTM网络选取最优参数。最后,对瓶颈指数的分量进行预测,并将预测结果重构。仿真实验结果表明,基于LMD-QPSO-LSTM的动态瓶颈预测方法可以有效提高预测精度,且能够准确地跟踪瓶颈位置的变化。与其他模型相比,所提方法至少将平均绝对误差(Mean Absolute Error, MAE)降低了52.63%,平均百分比误差(Mean Absolute Percentage Error, MAPE)降低了25.14%,均方根误差(Root Mean Square Error, RMSE)降低了45.78%。 展开更多
关键词 局部均值分解 长短期记忆网络 改进量子粒子群算法 动态瓶颈预测 瓶颈漂移
在线阅读 下载PDF
基于自适应噪声参数优化ELMD的行星齿轮箱故障诊断研究 被引量:10
10
作者 王朝阁 李宏坤 +1 位作者 杨蕊 任学平 《振动与冲击》 EI CSCD 北大核心 2020年第18期60-69,共10页
针对总体局部平均分解(ELMD)中添加白噪声的振幅和集成次数两个关键参数设置依赖使用者经验,以及添加噪声后在信号重构过程中存在残余噪声污染和运算量大的问题,提出一种自适应噪声参数优化的总体局部均值分解(APOELMD)方法。该方法在... 针对总体局部平均分解(ELMD)中添加白噪声的振幅和集成次数两个关键参数设置依赖使用者经验,以及添加噪声后在信号重构过程中存在残余噪声污染和运算量大的问题,提出一种自适应噪声参数优化的总体局部均值分解(APOELMD)方法。该方法在局部均值分解(LMD)过程中添加成对高频正负白噪声,噪声的幅值和集成次数分别固定为0.01 SD(SD为原始信号的标准差)和2;不断地改变白噪声的上限频率,利用相对均方根误差这一指标来自适应地选取白噪声的最佳上限频率;白噪声的最佳上限频率确定之后,APOELMD方法即可实现最理想的分解效果。仿真实验结果表明,该方法显著提升了ELMD的性能,提高了诊断效率;将该方法应用于行星轮箱故障诊断中,能够精确提取故障特征信息,实现了对行星齿轮箱局部损伤故障的准确判别。 展开更多
关键词 总体局部均值分解(elmd) 噪声最佳上限频率 参数优化 行星齿轮箱 特征提取
在线阅读 下载PDF
基于小波改进阈值去噪与LMD的滚动轴承故障诊断研究 被引量:3
11
作者 俞昆 谭继文 李善 《组合机床与自动化加工技术》 北大核心 2016年第10期62-66,共5页
为从含有强烈噪声干扰的滚动轴承振动信号中提取故障特征信息,提出了一种小波改进阈值去噪与局部均值分解(LMD)相结合的故障诊断方法。首先,根据构造小波改进阈值函数需满足的必要条件以及滚动轴承振动信号特征,提出了适应于滚动轴承振... 为从含有强烈噪声干扰的滚动轴承振动信号中提取故障特征信息,提出了一种小波改进阈值去噪与局部均值分解(LMD)相结合的故障诊断方法。首先,根据构造小波改进阈值函数需满足的必要条件以及滚动轴承振动信号特征,提出了适应于滚动轴承振动信号的抛物线平滑阈值函数,利用其对振动信号进行去噪预处理;然后,对去噪后的振动信号进行LMD分解得到若干乘积函数分量(PF);最后,根据相关系数筛选出有效PF分量,并对其进行包络解调,提取故障特征频率。仿真分析和应用实例结果表明,该方法能有效提取滚动轴承故障特征信息,实现滚动轴承的故障诊断。 展开更多
关键词 小波改进阈值 局部均值分解 滚动轴承 故障诊断
在线阅读 下载PDF
基于LMD近似熵和改进PSO-ELM的轴承故障诊断 被引量:4
12
作者 卞东学 张金萍 《机床与液压》 北大核心 2023年第14期227-232,共6页
针对滚动轴承故障特征提取与故障识别困难的问题,提出局部均值分解(LMD)近似熵和改进粒子群优化的极限学习机(PSO-ELM)结合的滚动轴承故障诊断方法。将不同工况信号用LMD分解为一系列乘积分量,不同工况的信号在不同频带的近似熵值会发... 针对滚动轴承故障特征提取与故障识别困难的问题,提出局部均值分解(LMD)近似熵和改进粒子群优化的极限学习机(PSO-ELM)结合的滚动轴承故障诊断方法。将不同工况信号用LMD分解为一系列乘积分量,不同工况的信号在不同频带的近似熵值会发生改变,结合相关性系数选出前3个分量,计算近似熵定值作为输入的特征向量。针对PSO早熟收敛的缺点,引入自适应权重法与DE算法对PSO进行改进,将特征值输入到改进PSO-ELM网络模型中,对滚动轴承不同工况进行故障识别与分类。结果表明,基于LMD近似熵和改进粒子群优化的ELM不仅能够识别滚动轴承的故障类型,并且有更高的分类正确率,验证了该方法的可行性。 展开更多
关键词 局部均值分解 近似熵 改进PSO-ELM 故障诊断
在线阅读 下载PDF
基于EEMD能量矩与ISSA-SVM算法的GIS局部放电类型识别方法 被引量:18
13
作者 王利福 刘屹江泽 王燚增 《电子测量与仪器学报》 CSCD 北大核心 2022年第5期204-212,共9页
为有效识别气体绝缘开关组合电器(gas insulated switchgear,GIS)局部放电(partial discharge,PD)类型,进而保障设备安全稳定运行,提出了一种基于集合模态分解(ensemble empirical mode decomposition,EEMD)联合能量矩与改进麻雀群搜索... 为有效识别气体绝缘开关组合电器(gas insulated switchgear,GIS)局部放电(partial discharge,PD)类型,进而保障设备安全稳定运行,提出了一种基于集合模态分解(ensemble empirical mode decomposition,EEMD)联合能量矩与改进麻雀群搜索算法优化支持向量机(improved sparrow search algorithm-support vector machines,ISSA-SVM)算法的GIS局部放电类型识别方法。首先搭建能产生4种局部放电类型效果的GIS局部放电实验平台,以获取4种局部放电信号,然后利用EEMD联合能量矩算法分别对4种局部放电信号进行模态分解与特征向量提取,最后利用经ISSA算法优化后的SVM算法对GIS局部放电类型进行识别。实验结果表明,所提方法可有效识别GIS不同局部放电类型,且较PSO-SVM与SSA-SVM算法识别精度分别提高了16.7%与8.5%,验证了所提GIS局部放电类型识别方法的有效性以及优越性。 展开更多
关键词 气体绝缘开关组合电器 局部放电 集合模态分解 改进麻雀群搜索算法优化支持向量机(ISSA-SVM)
在线阅读 下载PDF
基于CEEMD-LMD-SCN的集合型配电网故障选线方法 被引量:4
14
作者 邓思敬 吴浩 +2 位作者 杨玉萍 漆梓渊 邹西 《科学技术与工程》 北大核心 2023年第3期1076-1086,共11页
为解决线路发生单相接地故障时,过渡电阻较高导致故障特征不明显,以及噪声干扰情况下难以对故障线路进行准确识别的问题,提出一种基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、局部均值分解(... 为解决线路发生单相接地故障时,过渡电阻较高导致故障特征不明显,以及噪声干扰情况下难以对故障线路进行准确识别的问题,提出一种基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、局部均值分解(local mean decomposition,LMD)和随机配置网络(stochastic configuration network,SCN)的故障选线方法。首先采用CEEMD与LMD对零序电流进行分解,分别计算其对应分量的能量熵;然后将求解出的能量熵值组合形成组合特征向量,利用SMOTE(synthetic minority oversampling technique)算法扩充数据,获得训练及测试数据;采用泛化能力较强的SCN网络建立配电网故障选线模型。仿真结果表明:本文故障选线方法在不同故障距离、不同接地电阻和不同故障初始角度的情况下能有效实现故障线路的选择,在高阻以及噪声干扰情况下,该方法适应性依然良好。 展开更多
关键词 配电网 互补集合经验模态分解 局部均值分解 随机配置网络 故障选线
在线阅读 下载PDF
基于IWOA-VMD的永磁同步电机匝间短路故障振动信号去噪方法 被引量:6
15
作者 夏焰坤 寇坚强 李欣洋 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期202-216,共15页
针对永磁同步电机(permanent magnet synchronous motor,PMSM)匝间短路故障振动信号易受噪声干扰导致故障特征难以准确提取的问题,提出一种改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)优化变分模态分解(variational ... 针对永磁同步电机(permanent magnet synchronous motor,PMSM)匝间短路故障振动信号易受噪声干扰导致故障特征难以准确提取的问题,提出一种改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)优化变分模态分解(variational mode decomposition,VMD),并将其应用于PMSM匝间短路故障振动信号去噪。首先在传统鲸鱼优化算法中引入非线性收敛因子、自适应权重和柯西算子,利用IWOA算法对VMD参数进行寻优来实现信号的自适应分解。然后根据多尺度排列熵-方差贡献率最优模态分量选取原则将信号分量分为噪声主导分量和有效信号分量,对噪声主导分量进行非局部均值滤波(non-local mean filtering,NLM)去噪。最后将去噪分量与有效信号分量重构为去噪信号。使用ANSYS有限元软件建立了电机短路故障模型,并搭建了短路故障实验平台,利用该方法对仿真与实测信号进行去噪处理,并与小波阈值去噪等去噪方法进行对比分析,得出仿真信号的信噪比从8 dB提升至20.2738 dB,实测信号的信噪比相较于小波阈值去噪提高了77.01%,验证了所提方法的有效性和实用性。 展开更多
关键词 永磁同步电机 匝间短路 振动信号 改进鲸鱼优化算法 变分模态分解 局部均值滤波
在线阅读 下载PDF
基于振动信号的低压万能式断路器分合闸故障程度评估方法的研究 被引量:31
16
作者 孙曙光 张强 +2 位作者 杜太行 王景芹 王岩 《中国电机工程学报》 EI CSCD 北大核心 2017年第18期5473-5482,共10页
目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local me... 目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local mean decomposition,LMD)将采集到的分合闸振动信号自适应分解,求取主要乘积函数(product function,PF)的改进多尺度排列熵(multi-scale permutation entropy,MMPE)构成特征向量,再经过降维后,作为改进支持向量机(support vector machine,SVM)的输入量,实现断路器工作模式的识别;当断路器处于故障模式时,对采集的振动信号求取多尺度排列熵偏均值(partial mean of multi-scale permutation entropy,PMMPE),作为故障程度定量评估指标,并参照所求得的不同故障模式的故障程度特性曲线,可实现分合闸故障程度的定量评估。经实测数据验证表明,所提方法可以完成断路器工作模式的有效识别,且PMMPE指标相较于峭度、能量和多尺度排列熵平均值指标,能够更加有效的完成低压万能式断路器分合闸故障程度的定量评估。 展开更多
关键词 低压万能式断路器 局部均值分解(LMD) 改进多尺度排列熵(MMPE) 支持向量机(SVM) 多尺度排列熵偏 均值(PMMPE)故障程度评估
在线阅读 下载PDF
LMD与小波阈值降噪结合的轴承故障识别 被引量:9
17
作者 张启帆 侯力 +2 位作者 魏永峭 赵斐 吴阳 《组合机床与自动化加工技术》 北大核心 2017年第3期105-108,共4页
直接小波阈值降噪会使有用信号部分失真,为更好地对轴承故障进行特征提取,提出将局部均值分解(LMD)与小波阈值降噪结合进行降噪处理,其方法是:对含噪音的信号先进行LMD分解,并仅对分离出的高频信号分量采用改进阈值函数的小波降噪,保留... 直接小波阈值降噪会使有用信号部分失真,为更好地对轴承故障进行特征提取,提出将局部均值分解(LMD)与小波阈值降噪结合进行降噪处理,其方法是:对含噪音的信号先进行LMD分解,并仅对分离出的高频信号分量采用改进阈值函数的小波降噪,保留残余信号的完整数据,然后重构信号。通过MATLAB仿真和轴承故障特征提取实验表明,与其它几种信号降噪方法相比,基于LMD方法并改进阈值函数的小波降噪方法,能提高信噪比,能更好的对信号进行特征提取。 展开更多
关键词 局部均值分解 小波降噪 改进阈值 轴承 故障识别
在线阅读 下载PDF
用ILMD多尺度时频熵识别直流牵引网振荡电流与故障电流 被引量:6
18
作者 杨洪耕 冷月 王智琦 《高电压技术》 EI CAS CSCD 北大核心 2018年第8期2457-2463,共7页
针对城市轨道交通直流牵引网的振荡电流容易引起继电保护系统频繁误动的问题,提出了一种基于改进局部均值分解的多尺度时频熵识别直流牵引网振荡电流与短路故障电流方法。利用改进局部均值分解法分析直流牵引网的馈线电流信号,获得其时... 针对城市轨道交通直流牵引网的振荡电流容易引起继电保护系统频繁误动的问题,提出了一种基于改进局部均值分解的多尺度时频熵识别直流牵引网振荡电流与短路故障电流方法。利用改进局部均值分解法分析直流牵引网的馈线电流信号,获得其时频分布;将信息熵理论引入时频分布,对时频平面进行频段划分,计算各频段的时频熵,求出时频平面的整体多尺度时频熵;定量描述馈线电流信号的能量在时频平面分布的均匀性,均匀性的不同可以反应直流牵引网运行状态的差别,从而可通过多尺度时频熵的大小区分直流牵引网的振荡电流与短路故障电流。算例分析验证了该方法的有效性。 展开更多
关键词 直流牵引网 振荡电流 短路故障电流 改进局部均值分解 多尺度时频熵
在线阅读 下载PDF
基于NLM-CEEMDAN和样本熵的水电机组振动信号去噪 被引量:9
19
作者 章芳情 袁方 +2 位作者 贺玉 王成城 郭江 《中国农村水利水电》 北大核心 2023年第6期286-294,共9页
振动监测分析是水电机组故障诊断的重要手段,如何从振动信号中滤除噪声以便于故障特征有效提取是关键问题,为此提出了基于非局部均值滤波(NLM)和自适应噪声完备集合经验模态分解方法(CEEMDAN)结合的振动信号去噪新方法,并在水电机组摆... 振动监测分析是水电机组故障诊断的重要手段,如何从振动信号中滤除噪声以便于故障特征有效提取是关键问题,为此提出了基于非局部均值滤波(NLM)和自适应噪声完备集合经验模态分解方法(CEEMDAN)结合的振动信号去噪新方法,并在水电机组摆度监测分析中进行了应用。该方法利用NLM-CEEMDAN对信号进行降噪处理,获得若干个固有模态分量(IMF),并且计算各分量样本熵值来进行分量归类。最后通过将高频噪声分量和信噪混合分量中的噪声成分从原始信号中滤除来完成对振动信号的去噪。仿真和实例分析,该方法优于常用的分解分量重构法和小波去噪算法,具有更好的去噪效果,为水电机组故障特征提取提供了新思路。 展开更多
关键词 振动信号 局部均值滤波 自适应噪声完备集合经验模态分解 样本熵 去噪
在线阅读 下载PDF
基于LMD-IMVO-LSSVM的短期风速预测 被引量:5
20
作者 桑茂景 谢丽蓉 +2 位作者 李进卫 王斌 杨欢 《可再生能源》 CAS CSCD 北大核心 2021年第9期1197-1203,共7页
风速信号具有的随机性和波动性的特点给风速预测的准确性带来了巨大挑战。现有的风速预测方法较多,但大都难以满足风电场需求的预测效果。文章提出了一种基于LMD-IMVO-LSSVM的短期风速预测方法。首先采用局部均值分解(LMD)方法将原始风... 风速信号具有的随机性和波动性的特点给风速预测的准确性带来了巨大挑战。现有的风速预测方法较多,但大都难以满足风电场需求的预测效果。文章提出了一种基于LMD-IMVO-LSSVM的短期风速预测方法。首先采用局部均值分解(LMD)方法将原始风速序列分解为若干个平稳的风速子序列,结合改进多元宇宙优化算法(IMVO)寻优最小二乘支持向量机(LSSVM)的可调参数预测方法,建立了LMD-IMVO-LSSVM的风速预测组合模型;然后对分解得到的每个平稳子序列进行单独的预测,叠加各子序列预测结果,即得到最终的风速预测值。通过实验仿真分析得出,文章提出的组合预测模型可大大提高风速预测的准确性。 展开更多
关键词 风速预测 局部均值分解 改进多元宇宙优算法 最小二乘支持向量机
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部