期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:4
1
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合核极限学习机 超参数优化
在线阅读 下载PDF
基于改进蚁群优化算法的中高速长网纸机速度链的控制 被引量:4
2
作者 汤伟 马强 +1 位作者 税宇阳 王帅 《中国造纸》 CAS 北大核心 2019年第11期42-50,共9页
对中高速长网纸机而言,确保速度链控制满足工艺要求对纸机正常运行有着重要意义。目前,纸机速度链控制多采用常规PID控制,但中高速长网纸机由于自身传动点多、车速快,故对闭环系统的响应速度和控制精度要求高,常规PID参数整定方法难以... 对中高速长网纸机而言,确保速度链控制满足工艺要求对纸机正常运行有着重要意义。目前,纸机速度链控制多采用常规PID控制,但中高速长网纸机由于自身传动点多、车速快,故对闭环系统的响应速度和控制精度要求高,常规PID参数整定方法难以满足上述控制要求。蚁群优化算法(ACO)是一种适合多目标寻优的全局搜索算法,但传统蚁群算法易陷入局部最优及搜索较慢的问题,对此,本课题将信息素因子(α)和启发式因子(β)按一定比例关系随迭代进行变化,提出一种改进蚁群优化算法,并将其应用于速度链PID控制器参数整定中。仿真结果表明,与常规PID控制相比,基于改进的蚁群优化算法PID控制系统响应速度更快、超调更小、抗干扰能力更好、鲁棒性更强。应用结果表明,该控制系统可保持纸机各部分速度长期稳定。 展开更多
关键词 中高速网纸机 速度链控制 改进蚁群优化算法 PID参数优化
在线阅读 下载PDF
融合ICOA及PSM的轮毂电机多场耦合噪声优化
3
作者 吴华伟 李蒗 +2 位作者 李智 曾运运 彭建平 《重庆交通大学学报(自然科学版)》 北大核心 2025年第7期23-32,共10页
为削弱轮毂电机电磁振动噪声,以18槽16极14吋永磁轮毂电机为例,提出了一种融合改进浣熊优化算法(ICOA)及参数扫描法(PSM)的结构优化设计方法。建立基于PSM的齿槽转矩数据库,解析定子辅助槽数量对齿槽转矩的影响机理;构建基于自适应边界... 为削弱轮毂电机电磁振动噪声,以18槽16极14吋永磁轮毂电机为例,提出了一种融合改进浣熊优化算法(ICOA)及参数扫描法(PSM)的结构优化设计方法。建立基于PSM的齿槽转矩数据库,解析定子辅助槽数量对齿槽转矩的影响机理;构建基于自适应边界和淘汰机制的改进浣熊优化算法,设计基于ICOA的求解器对轮毂电机辅助槽进行优化,并与基于COA、MA、SSA的3种求解器对比寻优性能;搭建轮毂电机的结构场、电磁场及声场等多物理场耦合仿真模型,对比定子电枢结构优化前后的噪声声压级。研究结果表明:ICOA求解器在收敛速度和结果精度上优于其他求解器;优化后齿槽转矩幅值削弱59.08%;在空载时,电机转轴轴向的振动削弱了9.916×10^(3)mm/s^(2),转轴径向的振动削弱了2.1919×10^(4)mm/s^(2),A计权声压级减小了3.818 dB;在负载时,转轴轴向的振动削弱了4.8459×10^(4)mm/s^(2),转轴径向的振动削弱了4.4226×10^(4)mm/s^(2),A计权声压级减小了7.648 dB;7倍频振动得到有效抑制,噪声总体水平从70 dB级削弱到60 dB级,提高了驾乘人员的安全性和舒适性。 展开更多
关键词 车辆工程 轮毂电机 噪声优化 改进浣熊优化算法 参数扫描法 多场耦合
在线阅读 下载PDF
基于ICOA算法的泵控液压马达PID调速系统 被引量:1
4
作者 杨焕峥 崔业梅 +1 位作者 薛洪惠 徐玲 《机床与液压》 北大核心 2025年第5期101-106,共6页
为了提高泵控液压马达PID调速系统的速度和精度,通过建立数学模型和Simulink仿真系统,确定了变量泵控定量液压马达系统以液压泵摆角为输入的调速控制回路的传递函数;针对传统PID调速系统在速度和精度方面的局限性,引入一种改进的长鼻浣... 为了提高泵控液压马达PID调速系统的速度和精度,通过建立数学模型和Simulink仿真系统,确定了变量泵控定量液压马达系统以液压泵摆角为输入的调速控制回路的传递函数;针对传统PID调速系统在速度和精度方面的局限性,引入一种改进的长鼻浣熊优化算法(ICOA),该算法结合了反向学习差分进化和萤火虫扰动策略以提高系统性能。在CEC2022函数的性能测试中,相比长鼻浣熊优化算法等5种算法,ICOA算法表现优异,它在单峰、多峰、复合且多模态的函数上均表现出较好的收敛速度、寻优精度和鲁棒性。最后,通过仿真验证,ICOA算法在泵控液压马达PID调速性能优化方面具有更好的效果,能够更有效地使系统响应达到期望的状态。 展开更多
关键词 泵控液压马达 PID调速系统 改进浣熊优化算法 控制性能
在线阅读 下载PDF
基于CLD-COA-ELM的光伏阵列故障诊断方法研究 被引量:5
5
作者 张健 赵咪 +1 位作者 黄毅 李景云 《太阳能学报》 北大核心 2025年第1期632-640,共9页
为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和... 为提升光伏阵列故障诊断的准确率,提出一种基于改进长鼻浣熊优化算法优化极限学习机的光伏阵列故障诊断方法。首先,分析阵列中光伏组件在发生故障时的输出特性,选择合适的故障特征;其次,针对极限学习机在光伏阵列故障分类时初始权值和阈值的随机性问题,采用长鼻浣熊优化算法求解最优的初始权重和阈值;进一步地,针对长鼻浣熊算法初始参数的随机性和全局搜索能力的局限性问题,通过Circle混沌映射、莱维飞行和动态折射反向学习对该算法进行优化,提高寻优精度和速度;最后,结合光伏阵列故障实验数据,验证故障诊断模型的分类效果。结果表明,对于训练集和测试集数据,该诊断模型提高了故障分类精度,诊断率分别达到100%和98.33%,优于传统极限学习机、BP神经网络、支持向量机和卷积神经网络故障诊断的准确率。 展开更多
关键词 光伏组件 故障分析 特征选择 监督学习 极限学习机 改进长鼻浣熊优化算法
在线阅读 下载PDF
基于MICOA的随钻加速度计误差在线补偿
6
作者 杨金显 贺紫薇 《电子测量与仪器学报》 北大核心 2025年第1期187-194,共8页
为了提高随钻加速度计测量精度,设计一种基于磁惯性长鼻浣熊算法的加速度计误差在线补偿方法。首先,根据误差来源建立误差补偿模型;利用陀螺仪和磁强计建立重力夹角与磁重力夹角约束条件;将加速度真值与理论值模值之差设置为目标函数。... 为了提高随钻加速度计测量精度,设计一种基于磁惯性长鼻浣熊算法的加速度计误差在线补偿方法。首先,根据误差来源建立误差补偿模型;利用陀螺仪和磁强计建立重力夹角与磁重力夹角约束条件;将加速度真值与理论值模值之差设置为目标函数。其次,在长鼻浣熊算法基础上,根据递推重力加速度确定误差参数的初始搜索边界,同时根据当前误差参数、最优误差参数、边界值三者的相对距离缩小边界;再设计分界点筛选初始误差参数,使算法最初就朝着高质量解的方向搜索,同时保留部分劣解以增加误差参数多样性;接着在算法的全局探索阶段设计参数使其根据加速度计当前误差参数与误差参数平均值之间的误差来调整加速度计误差参数的搜索范围;最后,将重力模值之比设为深度开发阈值,构造高斯变异个体向量使加速度计误差参数跳出局部最优。实验结果表明:经MICOA补偿之后,加速度误差减小,井斜角范围降低了约62.5%,不同钻进角度下,井斜角均方根误差与标准差均能保持在1°以下。 展开更多
关键词 随钻测量 加速度计 浣熊算法 误差补偿 井斜角
在线阅读 下载PDF
基于ICOA-XGBoost的光伏阵列复合故障诊断研究
7
作者 张子洵 魏业文 +2 位作者 张轲钦 方豪 吴先用 《太阳能学报》 北大核心 2025年第5期251-259,共9页
为提高光伏阵列复合故障诊断的准确率,提出一种基于改进长鼻浣熊算法(ICOA)优化极端梯度提升(XGBoost)的故障诊断方法。首先,通过分析光伏阵列在不同故障状态下的输出特性,构建一个9维故障特征向量作为模型的输入变量。然后,将结合改进C... 为提高光伏阵列复合故障诊断的准确率,提出一种基于改进长鼻浣熊算法(ICOA)优化极端梯度提升(XGBoost)的故障诊断方法。首先,通过分析光伏阵列在不同故障状态下的输出特性,构建一个9维故障特征向量作为模型的输入变量。然后,将结合改进Circle混沌映射、Levy飞行和t分布随机扰动的ICOA算法与麻雀搜索算法(SSA)、鲸鱼优化算法(WOA)和长鼻浣熊算法(COA)相比较,其在寻优能力、稳定性和收敛速度方面展现出优越性。随后,利用改进的ICOA算法优化XGBoost模型,有效解决了模型初始化参数的设置问题。实验结果显示,结合9维故障特征向量的ICOA-XGBoost模型在故障诊断精度上达到97.23%,优于其他对比模型,证实了所提方法的可行性和有效性。 展开更多
关键词 光伏阵列 故障诊断 改进浣熊算法 极端梯度提升
在线阅读 下载PDF
基于神经网络和稳健估计的风电机组状态监测
8
作者 岳子桐 李艳婷 赵宇 《中国机械工程》 北大核心 2025年第8期1842-1852,共11页
在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度... 在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度慢的问题,采用卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的网络结构,并引入一种新颖的优化算法——长鼻浣熊优化算法(COA),以改善温度预测模型的训练效果。此外,考虑到实际操作环境中传统控制图存在较高的假警报率这一问题,提出了一种结合中位数估计(MED)与最小正则化加权协方差行列式估计(MRWCD)的策略,用于残差向量的稳健性监测。基于上述改进,建立了一个多元指数加权移动平均控制图。在华东地区某一风电场的应用案例表明,相较于传统的监测手段,所提方法能够显著减少误报的情况,并且在风电机组的状态监测过程中,可靠性与稳定性更高。 展开更多
关键词 风电机组状态监测 卷积神经网络-双向门控循环单元 浣熊优化算法 稳健检验统计量
在线阅读 下载PDF
基于漏磁场和ICOA-ResNet的变压器绕组早期故障诊断 被引量:20
9
作者 刘建锋 李志远 周亚茹 《电力系统保护与控制》 EI CSCD 北大核心 2024年第9期99-110,共12页
针对变压器绕组变形、轻微匝间短路故障诊断准确率低的问题,提出一种变压器绕组早期故障诊断方法。首先,利用ANSYS仿真软件建立与实验变压器相关参数一致的有限元模型,分析变压器在绕组发生各种故障的漏磁场分布规律,并根据这些规律选... 针对变压器绕组变形、轻微匝间短路故障诊断准确率低的问题,提出一种变压器绕组早期故障诊断方法。首先,利用ANSYS仿真软件建立与实验变压器相关参数一致的有限元模型,分析变压器在绕组发生各种故障的漏磁场分布规律,并根据这些规律选取合适的故障特征以及光纤漏磁场传感器安装位置。然后,通过改进长鼻浣熊优化算法(improved coati optimization algorithm,ICOA)寻找残差神经网络(ResNet)的最优超参数,以此参数构建ICOA-ResNet模型,将所得故障特征量输入模型进行故障诊断。最后,通过仿真数据和动模实验验证所提出的变压器绕组早期故障诊断模型的可行性。所提模型与支持向量机等4种模型相比,在绕组早期故障诊断上有更高的准确率,表明所提方法对变压器绕组变形、匝间短路故障诊断的有效性。 展开更多
关键词 变压器早期故障诊断 绕组变形 漏磁场 浣熊优化算法 残差神经网络 超参数优化
在线阅读 下载PDF
基于随机森林与支持向量机的热轧带钢凸度加权预测模型研究
10
作者 周亚罗 李子轩 +2 位作者 张少川 刘文广 张瑞成 《矿冶工程》 CAS 北大核心 2024年第6期144-150,共7页
针对传统带钢凸度预测方法预测精度低、速度慢的问题,建立了基于随机森林和支持向量机的热轧带钢凸度加权预测模型。采用改进长鼻浣熊算法分别对随机森林、支持向量机和随机森林与支持向量机加权预测模型的参数进行优化,提高凸度预测精... 针对传统带钢凸度预测方法预测精度低、速度慢的问题,建立了基于随机森林和支持向量机的热轧带钢凸度加权预测模型。采用改进长鼻浣熊算法分别对随机森林、支持向量机和随机森林与支持向量机加权预测模型的参数进行优化,提高凸度预测精度。以某公司热轧1 580 mm生产线实测数据进行凸度预测仿真研究,随机森林与支持向量机加权预测模型的均方根误差为2.23μm,与随机森林模型、支持向量机模型预测精度进行比较,加权预测模型的精度分别提高了7.08%、2.62%。 展开更多
关键词 凸度预测 热轧带钢 支持向量机 浣熊算法 凸度 随机森林
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部