期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
改进的自适应噪声总体集合经验模态分解在光谱信号去噪中的应用 被引量:19
1
作者 李晓莉 李成伟 《光学精密工程》 EI CAS CSCD 北大核心 2016年第7期1754-1762,共9页
针对近红外无创血糖检测过程中噪声对血糖浓度模型精度和稳定性的影响,提出用自适应噪声总体集合经验模态分解方法实现近红外光谱信号的去噪;同时,根据原始信号曲率和分解后本征模态函数(IMFs)曲率间的离散弗雷歇距离选择相关模态。首先... 针对近红外无创血糖检测过程中噪声对血糖浓度模型精度和稳定性的影响,提出用自适应噪声总体集合经验模态分解方法实现近红外光谱信号的去噪;同时,根据原始信号曲率和分解后本征模态函数(IMFs)曲率间的离散弗雷歇距离选择相关模态。首先,将自适应噪声的总体集合经验模态分解方法引入近红外光谱去噪过程,介绍了经验模态分解、集合经验模态分解、互补集合经验模态分解及自适应噪声总体集合经验模态分解的基本原理及具体实现过程。然后,应用基于曲率和离散弗雷歇距离的自适应噪声总体集合经验模态分解改进算法对仿真信号和光谱信号进行去噪,并将其标准差和信噪比作为评价指标。实验结果表明:应用提出的方法得到的血糖浓度近红外光谱数据其标准差为0.179 4,信噪比为19.117 5dB,实现了信号与噪声的分离,改善了重构信号质量,具有良好的自适应性,可以有效识别并提取有用信息。 展开更多
关键词 无创血糖检测 近红外光谱 信号去噪 自适应噪声总体集合经验模态分解 曲率 离散弗雷歇距离
在线阅读 下载PDF
基于总体平均经验模态分解的主动噪声控制系统研究 被引量:5
2
作者 罗磊 黄博妍 +1 位作者 孙金玮 温良 《自动化学报》 EI CSCD 北大核心 2016年第9期1432-1439,共8页
为了提高宽窄带混合噪声的消噪效果,本文提出一种基于总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)的主动噪声控制(Active noise control,ANC)系统,利用实时EEMD算法逐段将混合噪声分解成若干个固有模态函数(Intr... 为了提高宽窄带混合噪声的消噪效果,本文提出一种基于总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)的主动噪声控制(Active noise control,ANC)系统,利用实时EEMD算法逐段将混合噪声分解成若干个固有模态函数(Intrinsic mode functions,IMF)分量.因为这些IMF分量的频带各不相同,所以实现了混合噪声中宽带分量和窄带分量的有效分离,独立进行ANC处理后成功解决了处理混合噪声时带来的"火花"现象,而且避免了传统混合ANC(Hybrid ANC,HANC)系统中频率失调的影响.EEMD算法也是对混合噪声的平稳化处理过程,因此当混合噪声中出现非平稳变化时,本文提出的系统也能保持较好的系统稳定性.通过不同噪声环境下进行仿真分析,提出的ANC系统比HANC系统具有更好的系统稳定性和更小的稳态误差. 展开更多
关键词 混合噪声 主动噪声控制 总体平均经验模态分解 固有模态函数 非平稳变化
在线阅读 下载PDF
改进的噪声总体集合经验模式分解方法在轴承故障诊断中的应用 被引量:5
3
作者 阮荣刚 李友荣 +1 位作者 易灿灿 肖涵 《机械设计与制造》 北大核心 2019年第1期153-157,共5页
在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improv... 在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)轴承故障诊断方法。通过对比分析仿真信号和实测信号可以得知:ICEEMDAN方法可以改善信号重构质量,具有良好的自适应性,能够提高故障信号的信噪比,从而可以有效地识别并提取有用的故障特征信息。 展开更多
关键词 自适应噪声总体集合经验模式分解 本征模态函数 故障诊断 特征提取
在线阅读 下载PDF
基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取
4
作者 兀成龙 高翰林 +1 位作者 朱丹丹 李亚安 《振动与冲击》 EI CSCD 北大核心 2024年第13期190-197,216,共9页
当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出... 当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出了将改进排列熵与自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)相结合的空化噪声特征提取方法。首先,采用CEEMDAN方法对水下航行器螺旋桨的空化噪声进行分解,提取具有空化特征的固有模态函数(intrinsic mode function, IMF)分量;其次,选取相关系数最高的IMF分量并计算其多尺度改进排列熵(multi-scale improved permutation entropy, MIPE);最后,基于多尺度改进排列熵,建立支持向量机的特征分类模型。仿真和试验结果表明,该方法具有更好的可分性。 展开更多
关键词 多尺度改进排列熵(MIPE) 自适应噪声完备经验模态分解(CEEMDAN) 空化噪声 特征提取
在线阅读 下载PDF
基于变分模态分解算法的单通道无线电混合信号分离 被引量:9
5
作者 江春冬 王景玉 +2 位作者 杜太行 郝静 龙超 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第12期1618-1626,共9页
针对复杂电磁环境下单通道无线电混合信号分离困难及分离精度不高的问题,提出2次使用变分模态分解(VMD)算法对单通道无线电混合信号进行分离的方法.首先利用VMD算法对单通道无线电混合信号进行粗分离,并将VMD算法与总体平均经验模态分解... 针对复杂电磁环境下单通道无线电混合信号分离困难及分离精度不高的问题,提出2次使用变分模态分解(VMD)算法对单通道无线电混合信号进行分离的方法.首先利用VMD算法对单通道无线电混合信号进行粗分离,并将VMD算法与总体平均经验模态分解(EEMD)算法进行对比,得出前者分离出的信号在时域、频域及信噪比和相似系数等方面均比后者取得的对应结果效果好的结论.然后对VMD算法的参数利用改进的量子粒子群优化算法进行优化,确定所需分量个数和惩罚因子的值.最后对VMD算法分离后的信号使用参数优化后的VMD算法进行细分离.数值模拟和实验信号分析结果均表明,再次分离后所得到的信号精度较利用VMD算法对单通道无线电混合信号进行粗分离时更高,证明了所提算法对单通道无线电混合信号分离的有效性. 展开更多
关键词 变分模态分解 总体平均经验模态分解 改进的量子粒子群优化
在线阅读 下载PDF
基于奇异值分解(SVD)差分谱降噪和本征模函数(IMF)能量谱的改进Hilbert-Huang方法 被引量:18
6
作者 柴凯 张梅军 +1 位作者 黄杰 唐俊刚 《科学技术与工程》 北大核心 2015年第9期90-96,共7页
针对随机噪声和虚假IMF会导致改进HHT中EEMD分解质量下降和Hilbert谱混乱,提出了一种基于SVD差分谱降噪预处理和IMF能量谱剔除虚假分量的改进HHT。该方法首先对原始信号进行SVD降噪,通过基本不等式原理来确定相空间重组的最佳Hankel矩... 针对随机噪声和虚假IMF会导致改进HHT中EEMD分解质量下降和Hilbert谱混乱,提出了一种基于SVD差分谱降噪预处理和IMF能量谱剔除虚假分量的改进HHT。该方法首先对原始信号进行SVD降噪,通过基本不等式原理来确定相空间重组的最佳Hankel矩阵结构,利用奇异值差分谱来确定有效奇异值的阶次;然后对消噪的信号进行EEMD分解,通过IMF能量谱来去除虚假分量;最后对主IMF进行Hilbert谱分析。仿真和实验结果表明,SVD能提高信噪比,抑制噪声对EEMD分解精度的干扰;能量谱能有效地消除虚假IMF对Hilbert谱分析的影响;Hilbert谱中各频率成分清晰,解决了随机噪声和虚假分量对传统改进HHT的不良影响。 展开更多
关键词 改进Hilbert-Huang变换 奇异值分解 差分谱 总体平均经验模态分解 固有模态函数 能量谱
在线阅读 下载PDF
基于多尺度分解的微地震噪声压制与初至检测方法研究 被引量:8
7
作者 唐杰 温雷 +1 位作者 李聪 戚瑞轩 《石油物探》 EI CSCD 北大核心 2019年第4期517-523,共7页
地面微地震数据信噪比很低,严重影响了初至拾取的精度及反演结果的可靠性。为此,对基于改进的完备总体经验模态分解(ICEEMD)的去噪方法与初至检测方法进行了研究,首先利用ICEEMD将非平稳信号分解为一系列相对平稳的固有模态函数,然后提... 地面微地震数据信噪比很低,严重影响了初至拾取的精度及反演结果的可靠性。为此,对基于改进的完备总体经验模态分解(ICEEMD)的去噪方法与初至检测方法进行了研究,首先利用ICEEMD将非平稳信号分解为一系列相对平稳的固有模态函数,然后提出了一种自适应间隔阈值去除固有模态中噪声成分的方法,最后将去噪后的分量相加重构去噪后的信号。应用Hilbert变换计算每个分量的振幅,然后计算持续能量比,利用给定的阈值找到局部最大值,计算得到高能量的地震信号的到达时间。理论模型数据及实际微地震资料的处理结果表明,去噪后数据的信噪比得到了改进,相对于传统的空间域滤波与变换域阈值去噪,该去噪方法具有显著的优势及较好的应用价值,与Hilbert变换结合的初至检测方法可以有效地检测微地震信号初至。 展开更多
关键词 微地震 随机噪声压制 改进的完备总体经验模态分解 固有模态函数 自适应间隔阈值 重构 初至检测
在线阅读 下载PDF
基于ICEEMDAN和分布熵的SS-Y伸缩仪信号随机噪声压制方法 被引量:3
8
作者 吴林斌 《大地测量与地球动力学》 CSCD 北大核心 2024年第4期429-435,共7页
结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量... 结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量的分布熵值,根据不同分布熵值的大小和表征的分量信号混乱程度,有针对性地对各IMF进行取舍;最后进行线性重构。设计仿真信号去噪实验和SS-Y伸缩仪信号去噪实验,结果表明,基于ICEEMDAN-DistEn去噪模型的伸缩仪信号重构还原度较好,去噪效果显著,明显优于CEEMDAN-DistEn、小波去噪和卡尔曼滤波等去噪模型。 展开更多
关键词 SS-Y伸缩仪 随机噪声压制 改进自适应噪声完备集合经验模态分解 分布熵 信噪比
在线阅读 下载PDF
基于ICEEMDAN分解重构的BiLSTM-KELM短期电力负荷预测 被引量:3
9
作者 王晨 李又轩 +2 位作者 王淑侠 邬蓉蓉 吴其琦 《科学技术与工程》 北大核心 2024年第32期13836-13843,共8页
短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分... 短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和排列熵(permutation entropy,PE)重构部分,以及双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)与核极限学习(kernel extreme learning machine,KELM)预测部分。首先,使用ICEEMDAN将复杂的负荷数据分解成n个相对平稳的子序列,从而降低数据的随机性,并引入排列熵来计算每个子序列的PE值来进行重构,有效减小了模型的计算规模。其次,采用BiLSTM模型来挖掘数据之间的内在联系,对各个重构序列进行学习和预测。最后,利用KELM对重构序列的预测值进行非线性拟合,进一步提高预测精度。实验结果表明:ICEEMDAN-PE-BiLSTM-KELM模型比传统长短期记忆神经网络(long short-term memory,LSTM)模型的均方根误差(root mean square error,RMSE)降低了106.05 MW,平均绝对误差(mean absolute error,MAE)降低了62.34 MW,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了0.877%,可见该模型能够更好地解决数据的复杂性和随机性,同时提高预测精度。 展开更多
关键词 短期电力负荷预测 改进自适应噪声完备集经验模态分解(ICEEMDAN) 排列熵(PE) 双向长短期记忆神经网络(BiLSTM) 核极限学习(KELM)
在线阅读 下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:4
10
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进自适应噪声完备集合经验模态分解 样本熵 蜣螂优化算法
在线阅读 下载PDF
基于多层信号分解的混凝土拱坝变形监测模型 被引量:1
11
作者 王子轩 欧斌 +3 位作者 陈德辉 杨石勇 赵定柱 傅蜀燕 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第6期1-9,共9页
为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模... 为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模态分量(IMF)个数能够准确描述大坝变形.然后,对于高频IMF分量,采用变分模态分解(VMD)进行二次分解,并利用偏最小二乘法(PLS)分析变形序列影响因子,以提取最佳的IMF分量作为后续模型的输入因子.最后,利用改进的共生生物搜索算法(ISOS)结合长短期记忆神经网络(LSTM)进行大坝变形的准确预测.研究结果表明:相较于单层信号处理,本文通过二次信号处理可以显著提升模型的预测精度;对二次分解后的IMFs分量进行PLS筛选可以有效避免模型的冗余性,提高计算效率;相较于各对比模型,本文模型在各测点上均具有较好的预测精度和稳定性.本文提出的模型能够深入挖掘大坝监测数据中的拓扑关系,有效保留数据中的高频有用信息,从而提高预测的准确性和平滑性,展示出较好的预测精度和泛化能力. 展开更多
关键词 大坝变形 自适应噪声完全集合经验模态分解 样本熵 K-均值聚类算法 改进的共生生物搜索算法 变分模态分解
在线阅读 下载PDF
基于改进深度残差收缩网络的电缆早期故障识别 被引量:1
12
作者 唐丹 吴浩 +1 位作者 蔡源 郑超文 《科学技术与工程》 北大核心 2024年第28期12159-12168,共10页
电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态... 电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态分解方法(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)进行故障信号处理,并利用相关系数筛选本征模态函数(intrinsic mode functions,IMF);然后对IMF分量求其复合多尺度排列熵作为进一步的特征提取,以构建特征数据集;最后利用改进的收缩模块,多尺度卷积层、Self-Attention和SimAM注意力机制对深度残差收缩网络进行改进。使用改进的深度残差收缩网络进行电缆早期故障识别实验。实验结果表明:该算法能准确识别出电缆早期故障,且具有一定的抗干扰能力。 展开更多
关键词 电缆早期故障 改进的完全自适应噪声经验模态分解方法(ICEEMDAN) 复合多尺度排列熵 改进深度残差收缩网络 故障识别
在线阅读 下载PDF
基于ICEEMDAN-PE-GDBO-LSSVM的风电功率预测
13
作者 汪繁荣 张旭东 《现代电子技术》 北大核心 2025年第10期57-62,共6页
随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM... 随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM)的组合模型。首先使用ICEEMDAN对风电数据进行分解,从而降低复杂度;之后根据PE对分解后得到的各分量进行聚合,再使用GDBO算法对LSSVM的关键参数进行寻优,以得到最佳预测模型;最后使用优化模型对各聚合分量分别进行预测和叠加,得到总的预测结果。基于国内风电场数据集进行实验验证,结果表明所提方法有较高的预测精度,均方根误差比单一的LSSVM模型低61.39%,在工程实践中具有更为广阔的应用前景。 展开更多
关键词 风电功率预测 自适应噪声完全集合经验模态分解 改进的蜣螂优化算法 排列熵 改进的完全集合经验模态分解 最小支持二乘向量机 分量聚合
在线阅读 下载PDF
基于ICEEMDAN的微电网混合储能容量配置 被引量:2
14
作者 刘旭民 张彦 刘晓波 《南方电网技术》 北大核心 2025年第1期140-149,共10页
针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中... 针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中可再生能源出力和用电负荷波动导致的联络线功率波动问题。该方法通过对微电网中不平衡功率进行功率信号分解,并分析确定高频分量和低频分量,实现功率信号重构。针对不同储能系统技术特点,采用钠硫电池平抑低频分量,采用超级电容平抑高频分量。然后,通过建立以储能初始投资和维护成本最小为目标的HESS容量优化配置模型,利用商业求解器GUROBI求解混合储能配置方案。基于某并网型微电网进行算例分析,结果表明配置HESS能有效平抑微电网联络线功率波动,且该方法具有较好的经济性。算例分析结果验证了所提方法的有效性和可行性。 展开更多
关键词 改进自适应噪声完备集合经验模态分解(ICEEMDAN) 微电网 混合储能 容量优化配置 GUROBI
在线阅读 下载PDF
基于MEEMD的内燃机辐射噪声贡献 被引量:15
15
作者 郑旭 郝志勇 +1 位作者 金阳 卢兆刚 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期954-960,共7页
为了研究内燃机振动成分对噪声的贡献,提出一种改进的集总平均经验模态分解(MEEMD)方法.通过仿真试验,对比MEEMD与传统经验模态分解(EMD)和集总平均经验模态分解(EEMD)的结果.结果表明,MEEMD是一种更为优秀的自适应信号模态分解方法,不... 为了研究内燃机振动成分对噪声的贡献,提出一种改进的集总平均经验模态分解(MEEMD)方法.通过仿真试验,对比MEEMD与传统经验模态分解(EMD)和集总平均经验模态分解(EEMD)的结果.结果表明,MEEMD是一种更为优秀的自适应信号模态分解方法,不仅能够抑制模态混叠问题,而且能够解决模态分裂等问题.采用MEEMD方法对内燃机振动成分对辐射噪声的贡献进行研究,以一个4缸4冲程内燃机为例,对标定工况下的缸盖罩振动信号和缸盖罩近场噪声信号进行MEEMD分解,并对分解得到的本征模态函数(IMF)进行时频分析,研究对辐射噪声贡献大的振动成分的来源.研究结果表明,通过MEEMD方法能够得到对内燃机辐射噪声贡献大的振动成分,并且准确确定其来源. 展开更多
关键词 内燃机 振动信号 噪声信号 改进的集总平均经验模态分解 时频分析
在线阅读 下载PDF
EEMD自适应去噪在拉曼光谱中的应用 被引量:12
16
作者 赵肖宇 方一鸣 +1 位作者 王志刚 翟哲 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第12期3255-3258,共4页
二代小波是公认较好的降噪手段,但是降噪效果依赖于基函数、分解层数和阈值等参数设置。经验模态分解(empirical mode decomposition,EMD)无需参数设定,按照频率特性将信号分解成本征模函数(intrinsic mode function,IMF),对IMF滤波,实... 二代小波是公认较好的降噪手段,但是降噪效果依赖于基函数、分解层数和阈值等参数设置。经验模态分解(empirical mode decomposition,EMD)无需参数设定,按照频率特性将信号分解成本征模函数(intrinsic mode function,IMF),对IMF滤波,实现了信号自适应去噪。拉曼光谱中信号和噪声交叠集中在极高频段,EMD产生模态混叠问题,影响去噪效果。应用总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)拉曼光谱克服了模态混叠,有效区分出高频信号和噪声,获得了与小波函数相似去噪效果。文中首先对一段非线性非平稳豆油脂拉曼光谱EMD分解,可见模态混叠,EEMD分解出清晰模态的特征分量。然后分别用快速傅里叶变换(fast Fourier transform,FFT)、小波变换(Wavelet)、EMD和EEMD处理含噪光谱,信噪比、均方根误差、相关系数三个方面指标表明FFT高频去噪效果最差,其次是EMD,恰当的Wavelet同EEMD效果相当,EEMD的优势是降噪过程的自适应。最后提出光谱时频分析方法和IMF噪声属性判别准则研究趋势。 展开更多
关键词 总体平均经验模态分解 拉曼光谱 信号降噪 自适应
在线阅读 下载PDF
EEMD在同时消除脉搏血氧检测中脉搏波信号高频噪声和基线漂移中的应用 被引量:21
17
作者 韩庆阳 王晓东 +1 位作者 李丙玉 周鹏骥 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1384-1388,共5页
人体血氧饱和度是基于脉搏波信号测量得到的,然而在脉搏波信号采集的过程中存在着由人体呼吸和仪器本身热噪声等带来的基线漂移和高频噪声,影响人体血氧饱和度的测量精度。因此,该文提出一种总体平均经验模态分解(Ensemble Empirical Mo... 人体血氧饱和度是基于脉搏波信号测量得到的,然而在脉搏波信号采集的过程中存在着由人体呼吸和仪器本身热噪声等带来的基线漂移和高频噪声,影响人体血氧饱和度的测量精度。因此,该文提出一种总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)与基于排列熵(Permutation Entropy,PE)的信号随机性检测相结合的方法,同时消除基线漂移和高频噪声。对脉搏波信号进行EEMD分解,计算分解到得到的内在模式分量的排列熵,选取阈值,分别判断并剔除代表高频噪声和基线漂移的内在模式分量。最后信号重构就得到同时消除高频噪声和基线漂移的脉搏波信号。通过自行研制的测量装置所采集的脉搏波信号进行实验验证,利用信号的频谱和交直流比R评价效果。结果表明:该方法有效地同时消除了脉搏波信号中的高频噪声和基线漂移,这将有利于人体血氧饱和度测量精度的提高。 展开更多
关键词 脉搏波信号 人体血氧饱和度 高频噪声 基线漂移 总体平均经验模态分解 排列熵
在线阅读 下载PDF
基于MEEMD-AIC的簇绒地毯织机噪声源识别方法 被引量:4
18
作者 徐洋 张晓蕾 +2 位作者 盛晓伟 赵锦艳 孙志军 《振动.测试与诊断》 EI CSCD 北大核心 2018年第6期1176-1181,1292,共7页
簇绒地毯织机噪声信号由多个噪声源信号混叠而成,为实现簇绒地毯织机噪声源识别,提出了一种基于改进集总平均经验模态分解(modified ensemble empirical mode decomposition,简称MEEMD)和赤池信息量准则(Akaike information criterion,... 簇绒地毯织机噪声信号由多个噪声源信号混叠而成,为实现簇绒地毯织机噪声源识别,提出了一种基于改进集总平均经验模态分解(modified ensemble empirical mode decomposition,简称MEEMD)和赤池信息量准则(Akaike information criterion,简称AIC)的噪声源识别方法。首先,利用MEEMD将测得的噪声信号分解为有限个本征模态函数(intrinsic mode function,简称IMF)分量;其次,对分量矩阵的协方差矩阵进行奇异值分解(singular value decomposition,简称SVD),得到矩阵特征值;然后,利用AIC准则估计有效分量的个数,同时结合能量特征指标和皮尔逊相关系数法筛选出有效分量;最后,对筛选出的有效分量逐一进行时频分析,实现簇绒地毯织机噪声源识别。结果表明,耦联轴系中钩轴振动是簇绒地毯织机最主要的噪声源,该方法适用于簇绒地毯织机噪声源识别,对实现簇绒地毯织机主动降噪提供了理论支持。 展开更多
关键词 改进集总平均经验模态分解 赤池信息量准则 簇绒地毯织机 噪声源识别
在线阅读 下载PDF
基于ICEEMDAN-SST的定点形变信号去噪:以宜昌地震台为例
19
作者 冷崇标 张辉 +1 位作者 康波 霍玉龙 《科学技术与工程》 北大核心 2025年第25期10579-10585,共7页
定点形变仪器观测精度高,易受仪器工作状态以及外部环境变化影响而产生噪声,这些噪声的存在不利于地震信息的提取。为了消除定点形变信号中的噪声,提出了一种结合改进的自适应噪声完备集合经验模态分解(improved complete ensemble empi... 定点形变仪器观测精度高,易受仪器工作状态以及外部环境变化影响而产生噪声,这些噪声的存在不利于地震信息的提取。为了消除定点形变信号中的噪声,提出了一种结合改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和同步压缩变换(synchrosqueezing transform,SST)的去噪模型。该模型通过对含噪声的信号进行ICEEMDAN分解获得若干固有模态函数(intrinsic mode function,IMF)分量;然后计算各分量的样本熵(sample entropy,SE),并结合方差贡献率、相关系数,划分出有效分量、含噪声分量;最后,利用SST对含噪声分量进行去噪,并与有效分量重构,获得去噪后的纯净信号。通过仿真实验以及宜昌地震台不同类型实测信号分析表明,ICEEMDAN-SST模型能有效地区分含噪声分量、有效分量,去噪后的信号还原度较高,固体潮形态清晰,去噪效果优于S-G(Savitzky-Golay)滤波、卡尔曼滤波、小波去噪等传统方法,适用于多种定点形变仪器的不同类型噪声的压制。ICEEMDAN-SST模型的提出对于定点形变仪器地震信息的提取有着重要意义,有助于这类观测仪器在地震分析预报中发挥更大的作用。 展开更多
关键词 样本熵 改进自适应噪声完备集合经验模态分解 同步压缩变换 定点形变 去噪
在线阅读 下载PDF
基于改进的MEEMD的隧道掘进爆破振动信号去噪优化分析 被引量:10
20
作者 周红敏 赵事成 +3 位作者 赵文清 王双 郝广伟 张宪堂 《振动与冲击》 EI CSCD 北大核心 2023年第10期74-81,共8页
爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始... 爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始信号进行MEEMD分解得到本征模态分量(intrinsic mode function,IMF),结合相关系数和样本熵(sample entropy,SE)-Hurst指数进行IMF分类;然后,针对含噪IMF分量中的残留噪声,使用最小均方(least mean square,LMS)自适应滤波进行降噪,达到信号去噪的目的。算法对比结果表明:在仿真试验中,MEEMD-LMS相较互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)等方法表现出更优的降噪性能;在隧道掘进爆破的实例分析中,MEEMD-LMS相较MEEMD对高频噪声的降噪效果更好,低频段频谱更清晰,具备良好的适用性。 展开更多
关键词 隧道掘进 爆破振动 改进总体平均经验模态分解(MEEMD) 最小均方(LMS)滤波 本征模态分量(IMF)评价
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部