为了避免单个滤波器在收敛速度与稳态误差上相互制约,从而导致系统性能降低的问题,本文采用凸组合最小均方算法(Combined Least Mean Square,CLMS),将快速滤波器和慢速滤波器并联使用,同时为进一步改善CLMS算法的性能,对已有的变步长凸...为了避免单个滤波器在收敛速度与稳态误差上相互制约,从而导致系统性能降低的问题,本文采用凸组合最小均方算法(Combined Least Mean Square,CLMS),将快速滤波器和慢速滤波器并联使用,同时为进一步改善CLMS算法的性能,对已有的变步长凸组合最小均方算法(Variable Step-size Convex Combination of LMS,VSCLMS)做出改进,提出了一种新的VSCLMS算法.在该算法中,对快速滤波器选用以最小均方权值偏差(Minimization of Mean Square Weight Error,MMSWE)为准则的按步分析的变步长滤波器;对慢速滤波器采用以稳态最小均方误差(Least Mean Square,LMS)为准则的固定步长滤波器.通过理论分析与仿真实验表明,该算法能够在噪声、时变以及非平稳的环境下保持较好的随动性能,且在各个阶段均保持良好的收敛性,与传统的CLMS、VSCLMS算法相比,不仅具有更快的收敛速度,而且拥有稳定的均方性能和较优的跟踪性能,为自适应滤波算法的研究提供了一条可行途径.展开更多
针对传统Unscented卡尔曼滤波器(Unscented Kalman filter,UKF)在噪声先验统计未知时变情况下非线性滤波精度下降甚至发散的问题,设计了一种带噪声统计估计器的自适应UKF滤波算法.首先根据极大后验(Maximum a posterior,MAP)估计原理,...针对传统Unscented卡尔曼滤波器(Unscented Kalman filter,UKF)在噪声先验统计未知时变情况下非线性滤波精度下降甚至发散的问题,设计了一种带噪声统计估计器的自适应UKF滤波算法.首先根据极大后验(Maximum a posterior,MAP)估计原理,推导出一种次优无偏MAP常值噪声统计估计器;接着在此基础之上,采用指数加权的方法,给出了时变噪声统计估计器的递推公式;最后对自适应UKF算法进行了性能分析.相比于传统UKF,该自适应UKF算法在噪声统计未知时变情况下不仅滤波依然收敛,滤波精度及稳定性显著提高,而且其具有应对噪声变化的自适应能力.仿真实例验证了其有效性.展开更多
文摘为了避免单个滤波器在收敛速度与稳态误差上相互制约,从而导致系统性能降低的问题,本文采用凸组合最小均方算法(Combined Least Mean Square,CLMS),将快速滤波器和慢速滤波器并联使用,同时为进一步改善CLMS算法的性能,对已有的变步长凸组合最小均方算法(Variable Step-size Convex Combination of LMS,VSCLMS)做出改进,提出了一种新的VSCLMS算法.在该算法中,对快速滤波器选用以最小均方权值偏差(Minimization of Mean Square Weight Error,MMSWE)为准则的按步分析的变步长滤波器;对慢速滤波器采用以稳态最小均方误差(Least Mean Square,LMS)为准则的固定步长滤波器.通过理论分析与仿真实验表明,该算法能够在噪声、时变以及非平稳的环境下保持较好的随动性能,且在各个阶段均保持良好的收敛性,与传统的CLMS、VSCLMS算法相比,不仅具有更快的收敛速度,而且拥有稳定的均方性能和较优的跟踪性能,为自适应滤波算法的研究提供了一条可行途径.
文摘针对传统Unscented卡尔曼滤波器(Unscented Kalman filter,UKF)在噪声先验统计未知时变情况下非线性滤波精度下降甚至发散的问题,设计了一种带噪声统计估计器的自适应UKF滤波算法.首先根据极大后验(Maximum a posterior,MAP)估计原理,推导出一种次优无偏MAP常值噪声统计估计器;接着在此基础之上,采用指数加权的方法,给出了时变噪声统计估计器的递推公式;最后对自适应UKF算法进行了性能分析.相比于传统UKF,该自适应UKF算法在噪声统计未知时变情况下不仅滤波依然收敛,滤波精度及稳定性显著提高,而且其具有应对噪声变化的自适应能力.仿真实例验证了其有效性.