期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
CEEMDAN和改进多尺度熵的声音信号故障诊断 被引量:10
1
作者 付国梓 吕勇 《机械设计与制造》 北大核心 2022年第5期185-190,共6页
声音信号采集具有非接触测量的优点,但易受到附近声源的影响而含有较大噪声,不利于故障特征识别。为此,提出一种自适应噪声的完全集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)和改... 声音信号采集具有非接触测量的优点,但易受到附近声源的影响而含有较大噪声,不利于故障特征识别。为此,提出一种自适应噪声的完全集成经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)和改进多尺度熵的声音信号故障诊断方法。该方法中CEEMDAN改善了EEMD(Ensemble Empirical Mode Decomposition,EEMD)的模态混叠,针对传统多尺度熵中粗粒时间序列长度不同和数据丢失的情况,提出一种平滑粗粒化处理的改进多尺度熵。将该方法应用于行星齿轮箱故障诊断中,可以对不同状态下的声音信号进行识别分类。通过数值仿真和实验数据分析,表明了提出的方法相对于其他方法的有效性和优越性。 展开更多
关键词 自适应噪声的完全集成经验模态分解 改进多尺度 平滑 故障诊断
在线阅读 下载PDF
基于集成精细复合多元多尺度模糊熵的齿轮箱故障诊断 被引量:1
2
作者 杨小强 宫建成 +1 位作者 安立周 刘晓明 《机电工程》 CAS 北大核心 2023年第3期335-343,共9页
针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模... 针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模糊熵(ERCmvMFE)算法,在此基础上,结合t分布随机邻域嵌入(t-SNE)和人工鱼群算法优化的核极限学习机(AFSA-KELM),提出了一种新的齿轮箱故障综合诊断方法。首先,采用多种形式粗粒化方法的集成方法以及多通道信号处理方法,对模糊熵算法进行了改进,并进行了齿轮箱故障的初始特征提取;然后,通过t-SNE压缩原始故障特征,实现了维数的约简,并将低维故障特征输入至AFSA-KELM中进行了故障的分类识别;最后,为了对ERCmvMFE方法的特征提取性能进行测试,采用QPZZ-II旋转机械故障模拟测试平台进行了相关的实验。实验结果表明:采用新的齿轮箱故障综合诊断方法能够对不同类型的齿轮箱故障进行可靠诊断,对齿轮箱5种工况下的20次识别实验中,获得的平均准确率可达98.92%,标准差为0.956,识别准确率和稳定性均优于其他对比方法。研究结果表明:采用ERCmvMFE算法能够更充分地提取出齿轮箱的故障特征,因此,基于该特征提取方法的故障诊断方法具有更高的齿轮箱故障识别准确率。 展开更多
关键词 集成精细复合多元多尺度模糊 人工鱼群算法优的核极限学习机 t分布随机邻域嵌入 特征提取 处理 多通道信号处理 故障分类识别
在线阅读 下载PDF
基于CMIE与参数优化KELM的旋转机械故障诊断策略 被引量:1
3
作者 连璞 吴磊 伍永豪 《机电工程》 北大核心 2024年第1期62-71,共10页
针对多尺度排列熵忽略信号幅值信息以及粗粒化处理存在不足,造成旋转机械故障识别准确率不稳定和不可靠等缺陷,提出了一种基于复合多尺度增长熵(CMIE)和算术优化算法(AOA)优化核极限学习机(KELM)的旋转机械故障诊断策略(方法)。首先,引... 针对多尺度排列熵忽略信号幅值信息以及粗粒化处理存在不足,造成旋转机械故障识别准确率不稳定和不可靠等缺陷,提出了一种基于复合多尺度增长熵(CMIE)和算术优化算法(AOA)优化核极限学习机(KELM)的旋转机械故障诊断策略(方法)。首先,引入增长熵代替排列熵,进行了故障特征提取,同时采用复合粗粒化处理进行了信号的多尺度分析,提出了复合多尺度增长熵指标,将其用于提取旋转机械振动信号的非线性故障特征;随后,利用AOA对KELM的核心参数进行了自适应优化,建立了网络结构最优的分类模型;最后,将故障特征输入至AOA-KELM分类器,进行了训练和测试,根据分类器的输出标签完成了样本的故障识别任务;利用旋转机械故障数据集对所提策略的性能进行了实验和分析。研究结果表明:CMIE方法可以有效地识别旋转机械的故障类型和故障程度,两种数据集的识别精度均达到了99.2%,在特征提取效率和识别精度方面均优于比较方法;AOA-KELM模型的识别准确率和识别效率优于遗传算法优化核极限学习机、粒子群算法优化极限学习机、网格算法优化核极限学习机和灰狼算法优化核极限学习机。 展开更多
关键词 复合多尺度增长 算术优算法 核极限学习机 滚动轴承 齿轮箱 复合处理 信号多尺度分析
在线阅读 下载PDF
IMIBSE与ISOMAP在旋转机械故障诊断中的应用 被引量:2
4
作者 周继彦 柳金峰 胡义华 《机电工程》 CAS 北大核心 2024年第6期1027-1038,1067,共13页
针对基本熵的区域划分标准不理想,导致无法有效测量振动信号的复杂度,使故障诊断的准确率不佳这一问题,提出了一种基于改进多尺度改进基本熵(IMIBSE)、等距特征映射(ISOMAP)和随机森林(RF)的旋转机械故障诊断方法。首先,采用基于方差的... 针对基本熵的区域划分标准不理想,导致无法有效测量振动信号的复杂度,使故障诊断的准确率不佳这一问题,提出了一种基于改进多尺度改进基本熵(IMIBSE)、等距特征映射(ISOMAP)和随机森林(RF)的旋转机械故障诊断方法。首先,采用基于方差的区域划分准则对基本熵进行了改进,结合改进的粗粒化处理,提出了IMIBSE,并将其用于提取故障特征;随后,利用ISOMAP对原始故障特征进行了特征降维,选择了对分类贡献最大的一组特征作为故障敏感特征;最后,基于RF建立了多故障分类器,将故障敏感特征输入至RF模型进行了训练和测试,实现了旋转机械的故障识别,利用齿轮箱和离心泵两种故障数据集将IMIBSE方法与复合多尺度基本熵、多尺度改进基本熵、多尺度基本熵进行了比较和分析。研究结果表明:IMIBSE不仅具有最佳的可视化效果,而且取得的识别准确率最高,二者均达到了100%,而二者的平均分类准确率分别为100%和99.8%;相较于其他故障诊断方法,IMIBSE方法的准确率更高,而且适用于小样本的故障识别问题。 展开更多
关键词 齿轮箱 离心泵 故障诊断 改进多尺度改进基本 等距特征映射 随机森林 改进处理
在线阅读 下载PDF
基于VMD-IMDE-PNN的滚动轴承故障诊断方法 被引量:8
5
作者 刘备 蔡剑华 彭梓齐 《噪声与振动控制》 CSCD 北大核心 2022年第5期96-101,133,共7页
为了提高滚动轴承故障诊断的准确性,提出一种变分模态分解(Variational Mode Decomposition,VMD)、改进粗粒化多尺度散布熵(Improved Coarse-grained Multi-scale Dispersion Entropy,IMDE)和概率神经网络(Probabilistic Neural Network... 为了提高滚动轴承故障诊断的准确性,提出一种变分模态分解(Variational Mode Decomposition,VMD)、改进粗粒化多尺度散布熵(Improved Coarse-grained Multi-scale Dispersion Entropy,IMDE)和概率神经网络(Probabilistic Neural Network,PNN)相结合的滚动轴承故障诊断方法。首先对振动信号进行VMD处理,根据互相关系数准则筛选最佳模态分量,突显振动信号的故障特性;然后针对多尺度散布熵(Multi-scale Dispersion Entropy,MDE)不稳定的缺点,对MDE的粗粒化过程进行改进,提出IMDE的非线性分析方法。模拟信号分析结果表明,相比于MDE方法,IMDE方法降低了熵值波动,提高了熵值稳定性。将两种方法运用于实际滚动轴承实验数据,发现相比于MDE,IMDE熵值曲线更平滑稳定,不同滚动轴承状态下的IMDE熵值曲线区分更加明显。最后采用PNN对提取的特征进行识别,与MPE-PNN,MDE-PNN以及VMD-MDE-PNN方法相比,所提的VMD-IMDE-PNN方法能精确地识别滚动轴承的故障类型,且识别率更高。 展开更多
关键词 故障诊断 变分模态分解 改进粗粒化多尺度散布熵 概率神经网络 滚动轴承
在线阅读 下载PDF
基于IMIE、MCFS和SSA-ELM的离心泵故障诊断方法 被引量:4
6
作者 辜文娟 张扬 《机电工程》 CAS 北大核心 2023年第9期1456-1463,共8页
采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习... 采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习机(SSA-ELM)的离心泵故障诊断方法。首先,基于改进粗粒化处理,提出了改进多尺度增长熵(IMIE)方法,将其用于提取故障特征,构造了反映离心泵损伤属性的特征矩阵;随后,采用多聚类特征选择(MCFS),对原始故障特征进行了重要性排序,获得了对分类识别贡献度更高的故障特征,提高了故障特征的质量;最后,将低维的敏感特征输入至基于麻雀搜索算法(SSA)的极限学习机(ELM)中,进行了离心泵故障分类,完成了离心泵不同故障类型的识别任务;并采用离心泵故障数据集,对基于IMIE、MCFS和SSA-ELM的故障诊断方法的有效性进行了实验验证。研究结果表明:所提故障诊断方法的故障识别准确率达到了100%,多次实验的平均准确率和标准差也优于其他对比的故障诊断方法,即IMIE能够准确地提取信号中的故障信息,进而表征离心泵的健康状态;SSA-ELM能够准确地识别离心泵的故障类型,证明该方法具有一定的有效性和优越性。 展开更多
关键词 叶片式泵 改进处理 改进多尺度增长 多聚类特征选择 麻雀搜索算法 极限学习机 特征矩阵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部