期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进的粒子群遗传算法的DNA编码序列优化 被引量:28
1
作者 崔光照 李小广 +2 位作者 张勋才 王延峰 李翠玲 《计算机学报》 EI CSCD 北大核心 2010年第2期311-316,共6页
在DNA计算中,DNA编码序列的设计是影响DNA计算可靠性的重要手段.在不同的DNA序列设计中,应该选择适当的约束条件,并且根据相应的约束条件提出每个DNA应该相应满足的评估公式.文中从DNA编码设计应满足的多约束条件中选取适当的约束条件,... 在DNA计算中,DNA编码序列的设计是影响DNA计算可靠性的重要手段.在不同的DNA序列设计中,应该选择适当的约束条件,并且根据相应的约束条件提出每个DNA应该相应满足的评估公式.文中从DNA编码设计应满足的多约束条件中选取适当的约束条件,提出评估公式,并采用改进的粒子群遗传算法来解决多目标优化问题.同时根据得到的序列与已有序列在综合适应度函数结果上进行对比,结果证明了该方法的有效性. 展开更多
关键词 DNA计算 DNA编码 多目标优化 改进粒子遗传算法
在线阅读 下载PDF
基于全局优化改进混沌粒子群遗传算法的物料平衡数据校正 被引量:2
2
作者 孙延吉 潘艳秋 《化工进展》 EI CAS CSCD 北大核心 2016年第9期2663-2669,共7页
结合遗传算法(GA)和粒子群算法(PSO)的优点以及混沌运动的特性,提出了加入混沌扰动的混沌粒子群遗传算法(DCPSO-GA),并使用5个高维非线性测试函数考察全局优化混合算法的性能。DCPSO-GA解决了在寻优搜索时出现的停滞现象,扩大了全局优... 结合遗传算法(GA)和粒子群算法(PSO)的优点以及混沌运动的特性,提出了加入混沌扰动的混沌粒子群遗传算法(DCPSO-GA),并使用5个高维非线性测试函数考察全局优化混合算法的性能。DCPSO-GA解决了在寻优搜索时出现的停滞现象,扩大了全局优化的搜索空间,丰富了粒子的多样性,且不需要函数梯度信息。测试结果证明,针对本文的5个测试函数DCPSO-GA能找到全局最优解,其收敛速度很快,大大减少了计算量。而且,经过与其他相关算法比较可知,当总的目标函数调用次数较接近或更少时,改进算法不论在计算精度还是收敛速度上,均有很大的提高。并将DCPSO-GA算法应用到重油裂解参数估计和预测中,测试结果证明,其提高了参数估计和预测的准确性,降低了误差,能有效找到全局最优解,收敛速度快,大大减少计算量。 展开更多
关键词 全局优化 改进的混沌粒子遗传算法 混沌序列 计算精度 收敛速度
在线阅读 下载PDF
基于粒子群遗传算法的光伏MPPT控制研究 被引量:15
3
作者 胡林静 刘凯 杨明文 《电测与仪表》 北大核心 2019年第14期23-27,共5页
局部阴影条件下,光伏阵列的功率输出呈现多峰特性,传统的MPPT跟踪算法容易陷入局部极值点,无法准确地跟踪到最大功率点。粒子群优化算法可以有效解决多峰寻优问题,但是普通粒子群算法容易出现收敛速度慢、早熟现象。提出一种改进的粒子... 局部阴影条件下,光伏阵列的功率输出呈现多峰特性,传统的MPPT跟踪算法容易陷入局部极值点,无法准确地跟踪到最大功率点。粒子群优化算法可以有效解决多峰寻优问题,但是普通粒子群算法容易出现收敛速度慢、早熟现象。提出一种改进的粒子群遗传(IPSO-GA)算法,该算法的惯性权重与学习因子随着迭代次数不断发生变化,可以同时兼顾算法的局部搜索与全局寻优能力,并且引进遗传算法的交叉、变异操作以增加种群多样性。仿真结果表明,改进算法在多峰最大功率跟踪过程中,具有良好的跟踪速度与寻优精度。 展开更多
关键词 局部阴影 改进粒子遗传算法 最大功率跟踪 光伏阵列
在线阅读 下载PDF
改进GA-PSO算法在多跑道航班着陆调度中的应用 被引量:4
4
作者 李丹程 曹斌 +1 位作者 钟华刚 王威 《小型微型计算机系统》 CSCD 北大核心 2014年第9期2110-2115,共6页
机场跑道是空中交通管理系统中重要的系统资源.为了合理分配航班的降落跑道和降落顺序,减少航班延误时间,分析了自适应遗传算法和基本粒子群优化算法的运行原理,分别对自适应遗传算法和基本粒子群算法进行改进,将改进自适应遗传算法引... 机场跑道是空中交通管理系统中重要的系统资源.为了合理分配航班的降落跑道和降落顺序,减少航班延误时间,分析了自适应遗传算法和基本粒子群优化算法的运行原理,分别对自适应遗传算法和基本粒子群算法进行改进,将改进自适应遗传算法引进到改进粒子群算法中,建立多跑道航班排序模型,应用改进粒子群遗传算法对跑道调度模型进行求解,并进行算例仿真分析.结果表明,改进混合算法能有效降低总的延误时间并加快收敛速度. 展开更多
关键词 改进粒子群遗传算法 多跑道航班调度 最少延误时间 空中交通管理 航班排序
在线阅读 下载PDF
融合EMD与GAIPSO-LSTM算法的锂离子电池RUL预测方法研究
5
作者 张俊贤 周英超 +3 位作者 李波 薛博峰 蒙心蕊 陈培震 《重庆理工大学学报(自然科学)》 北大核心 2025年第6期28-36,共9页
为提高锂离子电池RUL预测精度,提出一种将经验模态分解(EMD)、遗传算法混合改进粒子群优化算法(GAIPSO)以及长短期记忆(LSTM)神经网络结合的锂离子电池RUL预测模型。通过EMD对数据进行分解,结合Logistic混沌映射、自适应惯性权重、改进... 为提高锂离子电池RUL预测精度,提出一种将经验模态分解(EMD)、遗传算法混合改进粒子群优化算法(GAIPSO)以及长短期记忆(LSTM)神经网络结合的锂离子电池RUL预测模型。通过EMD对数据进行分解,结合Logistic混沌映射、自适应惯性权重、改进的速度更新公式,以及遗传算法中的选择、交叉和高斯变异操作,优化粒子群算法,利用改进后的GAIPSO算法对LSTM模型的参数进行优化,使用EMD-GAIPSO-LSTM预测模型对电池寿命进行预测,通过NASA发布的数据集进行模型预测精度验证。结果表明:该模型预测结果的平均绝对误差(mean absolute error,MAE)、均方根差(root mean square error,RMSE)分别在0.01204与0.01372以内,R^(2)在0.9791以上。相比于SSA-LSTM和PSO-LSTM模型,预测精度提高4.7%和2.5%,证明该模型对锂离子电池RUL预测准确性较高。 展开更多
关键词 锂离子电池 剩余使用寿命 EMD分解 遗传算法混合改进粒子算法 长短期记忆神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部