期刊文献+
共找到1,338篇文章
< 1 2 67 >
每页显示 20 50 100
改进粒子群算法优化支持向量机的入侵检测方法 被引量:10
1
作者 柯钢 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2019年第10期1341-1345,共5页
针对传统支持向量机(support vector machine,SVM)算法应用于入侵检测中存在参数选取的问题,文章提出了一种改进粒子群算法(improved particle swarm optimization,IPSO)和SVM相融合的网络入侵检测方法,即IPSO-SVM。将SVM的惩罚参数 C... 针对传统支持向量机(support vector machine,SVM)算法应用于入侵检测中存在参数选取的问题,文章提出了一种改进粒子群算法(improved particle swarm optimization,IPSO)和SVM相融合的网络入侵检测方法,即IPSO-SVM。将SVM的惩罚参数 C和核函数参数σ作为粒子群的粒子,以 K 倍交叉验证的准确率作为目标函数,通过粒子间的相互协作得到最优的SVM参数,利用KDD Cup 99数据集进行仿真测试。仿真结果表明,与其他算法相比,IPSO-SVM算法的检测时间更短,检测准确率更高,是一种有效的入侵检测算法。 展开更多
关键词 粒子算法 支持向量(SVM) 入侵检测 主成分分析(PCA)
在线阅读 下载PDF
基于改进粒子群算法和极限学习机模型的配电网物资需求预测 被引量:1
2
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习 改进粒子优化算法
在线阅读 下载PDF
粒子群算法优化支持向量回归的民机客舱座椅舒适度评价预测
3
作者 逄欣 苟秉宸 《机械科学与技术》 CSCD 北大核心 2024年第9期1624-1630,共7页
为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle ... 为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle swarm optimization,PSO)寻找全局最优参数,建立PSO-SVR人-民机客舱座椅舒适度评价预测模型,并对预测结果进行对比分析。分析结果表明:与BP神经网络(Back propagation,BP)模型相比,支持向量回归模型具有良好的鲁棒性;与SVR模型相比,PSO-SVR模型预测精度更高,误差波动小,预测结果均方误差(MSE)降低了85.95%,决定系数(R2)提高了15.42%。因此粒子群算法可以有效提高支持向量回归模型的预测精度和泛化能力。 展开更多
关键词 客舱座椅 支持向量回归 粒子算法 舒适度评价预测
在线阅读 下载PDF
基于混沌粒子群改进支持向量机对露天矿边坡稳定性的分类预测 被引量:4
4
作者 赵国彦 邹景煜 王猛 《矿冶工程》 CAS 北大核心 2024年第2期8-12,共5页
为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训... 为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训练,20%的数据用于模型测试。4种模型预测结果及工程实例验证结果表明,基于混沌粒子群改进支持向量机模型的预测效果上总体优于其他3种机器学习模型,预测准确率88%,能够有效预测边坡稳定性,可为露天矿边坡安全提供可靠的预测结果。 展开更多
关键词 边坡稳定性 混沌粒子优化 支持向量 预测
在线阅读 下载PDF
基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法 被引量:125
5
作者 郑含博 王伟 +3 位作者 李晓纲 王立楠 李予全 韩金华 《高电压技术》 EI CAS CSCD 北大核心 2014年第11期3424-3429,共6页
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的... 为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 展开更多
关键词 最小二乘支持向量 多类分类 粒子优化 故障诊断 电力变压器 准确率
在线阅读 下载PDF
改进的基于粒子群优化的支持向量机特征选择和参数联合优化算法 被引量:38
6
作者 张进 丁胜 李波 《计算机应用》 CSCD 北大核心 2016年第5期1330-1335,共6页
针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响,提出了一种改进的基于粒子群优化(PSO)的SVM特征选择和参数联合优化算法(GPSO-SVM),使算法在提高分类精度的同时选取尽可能少的特征数目。为了解决传统粒子群算法... 针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响,提出了一种改进的基于粒子群优化(PSO)的SVM特征选择和参数联合优化算法(GPSO-SVM),使算法在提高分类精度的同时选取尽可能少的特征数目。为了解决传统粒子群算法在进行优化时易出现陷入局部最优和早熟的问题,该算法在PSO中引入遗传算法(GA)中的交叉变异算子,使粒子在每次迭代更新后进行交叉变异操作来避免这一问题。该算法通过粒子之间的不相关性指数来决定粒子之间的交叉配对,由粒子适应度值的大小决定其变异概率的大小,由此产生新的粒子进入到群体中。这样使得粒子跳出当前搜索到的局部最优位置,提高了群体的多样性,在全局范围内寻找更优值。在不同数据集上进行实验,与基于PSO和GA的特征选择和SVM参数联合优化算法相比,GPSO-SVM的分类精度平均提高了2%~3%,选择的特征数目减少了3%~15%。实验结果表明,所提算法的特征选择和参数优化效果更好。 展开更多
关键词 支持向量 特征选择 参数优化 粒子优化算法 遗传算法 不相关性指数
在线阅读 下载PDF
改进粒子群算法优化的支持向量机及其应用 被引量:28
7
作者 王振武 孙佳骏 尹成峰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第12期1728-1733,共6页
传统粒子群优化(particle swarm optimization,PSO)算法主要包含两方面问题,即易陷入局部极小和后期震荡严重,为此引入混沌序列来初始化粒子群的位置,并在简化的粒子群数学模型上从两个方面对其进行了改进。本文利用改进的PSO算法对... 传统粒子群优化(particle swarm optimization,PSO)算法主要包含两方面问题,即易陷入局部极小和后期震荡严重,为此引入混沌序列来初始化粒子群的位置,并在简化的粒子群数学模型上从两个方面对其进行了改进。本文利用改进的PSO算法对支持向量机(support vector machine,SVM)的参数进行优化,仿真实验结果表明:与SVM、PSO-SVM以及遗传算法(genetic algorithm,GA)优化的SVM(GA-SVM)相比,改进PSO优化的SVM(IPSO-SVM)算法具有较高的分类准确率,并且与PSO-SVM算法相比,准确率提高了3%~5%,与PSO-SVM算法以及GA-SVM算法相比,IPSO-SVM的训练和泛化速度都明显提高。本文将IPSO-SVM算法应用到遥感影像的分类中,分类结果表明,与PSO-SVM算法相比IPSO-SVM算法具有更好的分类结果。 展开更多
关键词 粒子优化算法 混沌序列 支持向量 遥感影像
在线阅读 下载PDF
改进粒子群算法优化最小二乘支持向量机的网络流量混沌预测 被引量:11
8
作者 黄国权 尤新华 《激光杂志》 北大核心 2015年第3期96-99,共4页
为了提高网络流量的预测准确性,针对最小二乘支持向量机参数优化方法的缺陷,提出一种改进粒子群算法优化最小二乘支持向量机的网络流量混沌预测模型。首先将最小二乘支持向量机参数作为粒子初始位置,然后通过粒子群之间信息交流、互相... 为了提高网络流量的预测准确性,针对最小二乘支持向量机参数优化方法的缺陷,提出一种改进粒子群算法优化最小二乘支持向量机的网络流量混沌预测模型。首先将最小二乘支持向量机参数作为粒子初始位置,然后通过粒子群之间信息交流、互相协作找到最优参数,并对惯性权重和学习因子进行改进,最后对网络流量数据进行重构,并采用最优参数的最小二乘支持向量机建立网络流量预测模型。实验结果表明,本文模型提高了网络流量的预测精度,并大幅度减少了训练时间,可以满足网络流量在线预测要求。 展开更多
关键词 网络流量 粒子优化算法 混沌理论 最小二乘支持向量
在线阅读 下载PDF
基于支持向量回归机和粒子群算法的改进协同优化方法 被引量:2
9
作者 杨希祥 杨慧欣 +1 位作者 江振宇 张为华 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期34-39,共6页
研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群... 研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群算法求解系统级和学科级优化问题.仿真计算结果表明,设计的协同优化方法可有效求解多学科设计优化问题,和基本协同优化方法相比,求解精度高,优化迭代次数少,稳定性好.可为多学科设计优化研究提供理论参考. 展开更多
关键词 协同优化 支持向量回归 粒子算法
在线阅读 下载PDF
基于粒子群-支持向量机算法的激光诱导击穿光谱钢铁快速检测与分类 被引量:3
10
作者 曾庆栋 陈光辉 +8 位作者 李文鑫 孟久灵 李耿 童巨红 田志辉 张晓林 李国辉 郭连波 肖永军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1559-1565,共7页
钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意... 钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意义。利用激光诱导击穿光谱技术(LIBS)进行10种钢铁样品光谱数据的快速采集,并采用支持向量机(SVM)算法对其数据进行学习建模,得到钢铁快速分类模型。然而,由于不同钢铁样品的光谱数据特征是复杂且相似的,导致设置的模型参数也会对SVM模型的分类结果有着较大的影响。为了实现对不同牌号钢铁合金的快速检测分类,实验中采用粒子群算法(PSO)与网格寻优法两种不同方法来优化模型参数,并分别选取样品中6种微量元素(Mn、Cr、Cu、V、Mo、Ti)的17条特征谱线,和经主成分分析法(PCA)对全谱数据降维提取得到的前17个主成分作为模型的输入,建立PSO-SVM、PSO-PCA-SVM、PCA-SVM和SVM四种分类模型。实验结果表明,相比于精度最高的PCA-SVM模型的优化时间(257.84 s),PSO-SVM模型优化时间最短(11.5 s),且识别精度可达96.67%,与PCA-SVM模型的精度(97.5%)几乎相当。该结果表明LIBS结合PSO-SVM算法可实现快速的钢铁检测与分类,该方法为钢铁产品的快速检测与分类提供了一种新的解决途径。 展开更多
关键词 激光诱导击穿光谱 支持向量 粒子算法 钢铁分类
在线阅读 下载PDF
基于改进自适应杂交粒子群优化算法和最小二乘支持向量机的空中目标威胁评估 被引量:4
11
作者 许凌凯 杨任农 左家亮 《计算机应用》 CSCD 北大核心 2017年第9期2712-2716,2734,共6页
评估空中目标威胁程度是防空指挥控制系统的核心环节,评估的准确程度将对防空作战产生重大影响。针对传统评估方法实时性差、工作量大、评估精度不足、无法同时进行多目标评估等缺陷,提出了一种基于自适应杂交粒子群优化(ACPSO)算法和... 评估空中目标威胁程度是防空指挥控制系统的核心环节,评估的准确程度将对防空作战产生重大影响。针对传统评估方法实时性差、工作量大、评估精度不足、无法同时进行多目标评估等缺陷,提出了一种基于自适应杂交粒子群优化(ACPSO)算法和最小二乘支持向量机(LSSVM)的空中目标威胁评估方法。首先,根据空中目标态势信息构建威胁评估系统框架;然后,采用ACPSO算法对LSSVM中的正则化参数和核函数参数进行寻优,针对传统杂交机制的不足提出改进的交叉杂交方式,并使杂交概率自适应调整;最后,对比分析了各系统的训练和评估效果,并用优化后的系统实现多目标实时动态威胁评估。仿真结果表明,所提方法评估精度高,所需时间短,可同时进行多目标评估,为空中目标威胁评估提供了一种有效的解决方法。 展开更多
关键词 威胁评估 防空作战 自适应杂交粒子优化 最小二乘支持向量
在线阅读 下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测 被引量:3
12
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子优化(PSO) 最小二乘支持向量(LSSVM) 腐蚀速率预测
在线阅读 下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
13
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子优化算法 支持向量回归
在线阅读 下载PDF
基于粒子群优化算法的支持向量机参数选择及其应用 被引量:130
14
作者 邵信光 杨慧中 陈刚 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期740-743,748,共5页
参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该... 参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该方法的有效性后,用其建立了聚丙烯腈生产过程中数均分子量的软测量模型,结果表明该方法有效. 展开更多
关键词 支持向量 参数选择 粒子优化 聚丙烯腈 软测量
在线阅读 下载PDF
基于粒子群优化算法的支持向量机研究 被引量:50
15
作者 谷文成 柴宝仁 滕艳平 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期705-709,共5页
基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系... 基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系对仿真实验所获得的实验数据进行了评估,评估结果表明基于粒子群优化算法的支持向量机分类器明显优于标准支持向量机分类器,其分类结果表明基于粒子群优化算法的支持向量机分类器提高了分类结果的准确性,同时也验证了基于粒子群优化算法的支持向量机分类器在数据分类中的有效性. 展开更多
关键词 粒子优化算法(PSO) 支持向量(SVM) 优化 双螺旋分类 评价
在线阅读 下载PDF
基于支持向量机和粒子群算法的产品意象造型优化设计 被引量:25
16
作者 苏建宁 赵慧娟 +1 位作者 王瑞红 张书涛 《机械设计》 CSCD 北大核心 2015年第1期105-109,共5页
为满足消费者对产品造型的感性意象需求,提出了基于支持向量机和粒子群算法的产品意象造型优化设计方法。首先确定目标意象、代表性样本和造型设计参数,进行产品感性意象调查;然后应用支持向量机获得"造型设计参数-产品感性意象&qu... 为满足消费者对产品造型的感性意象需求,提出了基于支持向量机和粒子群算法的产品意象造型优化设计方法。首先确定目标意象、代表性样本和造型设计参数,进行产品感性意象调查;然后应用支持向量机获得"造型设计参数-产品感性意象"之间的映射关系,建立产品造型意象评价系统;最后以代表性样本为初始种群,以意象评价为适应度评估,利用粒子群算法建立产品意象造型优化设计系统。以汽车轮廓优化设计进行实例研究,结果表明该方法较好地模拟了设计思维,可为产品概念设计提供有效的辅助与支持。 展开更多
关键词 产品设计 支持向量 粒子算法 意象造型 优化设计
在线阅读 下载PDF
基于改进粒子群优化支持向量机的汽轮机组故障诊断 被引量:16
17
作者 石志标 宋全刚 +1 位作者 马明钊 李祺 《动力工程学报》 CAS CSCD 北大核心 2012年第6期454-457,462,共5页
基于支持向量机(SVM)在核函数参数和惩罚因子人为选取的盲目性以及传统粒子群算法(PSO)后期易陷于局部最小值的不足,提出了一种改进的粒子群算法(MPSO),建立了汽轮机组振动故障诊断模型并且利用故障数据进行了模式识别.结果表明:模型能... 基于支持向量机(SVM)在核函数参数和惩罚因子人为选取的盲目性以及传统粒子群算法(PSO)后期易陷于局部最小值的不足,提出了一种改进的粒子群算法(MPSO),建立了汽轮机组振动故障诊断模型并且利用故障数据进行了模式识别.结果表明:模型能够对SVM相关参数自动寻优,并且能达到较为理想的全局最优解;与PSO-SVM和GA-SVM算法相比,MPSO-SVM算法在收敛速度和准确率方面都有所提高. 展开更多
关键词 汽轮 振动 故障诊断 支持向量 粒子算法 遗传算法
在线阅读 下载PDF
粒子群优化–最小二乘支持向量机算法在高压断路器机械故障诊断中的应用 被引量:25
18
作者 贾嵘 洪刚 +1 位作者 薛建辉 崔建武 《电网技术》 EI CSCD 北大核心 2010年第3期197-200,共4页
提出了一种高压断路器机械故障诊断的智能算法,该算法采用最小二乘支持向量机(least squares support vector machine,LSSVM)算法,提取高压断路器振动信号的特征熵;为了提高故障诊断的精度,采用粒子群优化(particle swarm optimization,... 提出了一种高压断路器机械故障诊断的智能算法,该算法采用最小二乘支持向量机(least squares support vector machine,LSSVM)算法,提取高压断路器振动信号的特征熵;为了提高故障诊断的精度,采用粒子群优化(particle swarm optimization,PSO)算法,优化LSSVM算法的参数。算例表明:PSO-LSSVM算法不仅能够取得良好的分类效果,而且诊断速度与精度均高于传统的支持向量机(support vector machine,SVM)算法,适用于高压断路器机械故障诊断。 展开更多
关键词 高压断路器 最小二乘支持向量 粒子优化 故障诊断
在线阅读 下载PDF
基于改进粒子群算法的支持向量机 被引量:9
19
作者 周涛 张艳宁 +2 位作者 袁和金 邓方安 陆惠玲 《计算机工程与应用》 CSCD 北大核心 2007年第15期44-46,共3页
对求解含线性约束优化问题的粒子群算法(LPSO)进行了改进,给出了应用其训练支持向量机(SVM)的方法。改进后的算法在基本PSO惯性权重策略的基础上加入了基于种群收敛速度的自适应扰动,能够较好地调整算法的全局与局部搜索能力之间的平衡... 对求解含线性约束优化问题的粒子群算法(LPSO)进行了改进,给出了应用其训练支持向量机(SVM)的方法。改进后的算法在基本PSO惯性权重策略的基础上加入了基于种群收敛速度的自适应扰动,能够较好地调整算法的全局与局部搜索能力之间的平衡。对双螺旋问题的分类实验表明本文提出的方法稳定性好,训练出的SVM具有较高的分类正确率。 展开更多
关键词 支持向量 粒子优化算法 惯性权重策略
在线阅读 下载PDF
基于支持向量机-改进型鱼群算法的CO_2优化调控模型 被引量:11
20
作者 辛萍萍 张珍 +3 位作者 王智永 胡瑾 邵志成 张海辉 《农业机械学报》 EI CAS CSCD 北大核心 2017年第6期249-256,共8页
提出了融合支持向量机-改进型鱼群算法的CO_2优化调控模型,为CO_2精准调控提供定量依据。设计了嵌套试验,采集不同温度、光子通量密度、CO_2浓度组合下的黄瓜光合速率,以此构建基于支持向量机的黄瓜光合速率预测模型;以预测模型网络为... 提出了融合支持向量机-改进型鱼群算法的CO_2优化调控模型,为CO_2精准调控提供定量依据。设计了嵌套试验,采集不同温度、光子通量密度、CO_2浓度组合下的黄瓜光合速率,以此构建基于支持向量机的黄瓜光合速率预测模型;以预测模型网络为目标函数,采用改进型鱼群算法实现二氧化碳饱和点寻优,获得不同温度、光子通量密度组合条件的CO_2饱和点,进而构建CO_2优化调控模型。异校验结果表明,CO_2饱和点实测值与预测值相关系数为0.965,最大相对误差3.056%。提出的CO_2优化调控模型可动态预测CO_2饱和点,为实现设施CO_2精准调控提供了可行思路。 展开更多
关键词 CO2优化调控模型 支持向量算法 改进型鱼算法 光合速率 CO2饱和点
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部