期刊文献+
共找到149篇文章
< 1 2 8 >
每页显示 20 50 100
一种基于改进稠密卷积神经网络的表情识别方法 被引量:2
1
作者 戴沁璇 罗晓曙 +1 位作者 蒙志明 黄苑琴 《现代电子技术》 2022年第9期29-34,共6页
人的表情包含大量信息,可用于显示人的很多情感状态,例如疲劳和疼痛的表情等。卷积神经网络(CNN)是一种识别人脸表情的有效方法,它可以同时执行特征提取和分类,并可以自动发现数据中的多个表情特点。针对卷积神经网络参数大以及传统表... 人的表情包含大量信息,可用于显示人的很多情感状态,例如疲劳和疼痛的表情等。卷积神经网络(CNN)是一种识别人脸表情的有效方法,它可以同时执行特征提取和分类,并可以自动发现数据中的多个表情特点。针对卷积神经网络参数大以及传统表情识别方法准确率不高的问题,提出一种基于改进的稠密卷积神经网络的面部表情识别模型。首先通过使用Gabor滤波器初始化第一层卷积层;然后采用一种对数线性函数(LLU)进行网络优化,该模型中的特征重用和参数压缩技术提高了网络的学习能力,大大减少了模型参数;最后基于此模型设计了一个表情识别系统,该系统能够准确地识别照片上的表情和在线识别人脸表情。实验结果表明,该模型可以显著提高三个表情数据集的准确率,并能很好地识别人脸表情。 展开更多
关键词 人脸表情识别 改进稠密卷积神经网络 卷积层初始化 GABOR滤波器 激活函数 表情识别系统
在线阅读 下载PDF
基于卷积神经网络轻量化的改进SSD异纤检测方法 被引量:4
2
作者 胡胜 王紫悦 +3 位作者 张守京 李博豪 赵小惠 刘文慧 《计算机集成制造系统》 北大核心 2025年第1期171-181,共11页
精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引... 精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引入深度可分离卷积、倒残差结构等创新性设计,将SSD算法中原有骨干特征提取网络VGGNet16替换为MobileNetv2网络;然后,对于SSD算法中生成的候选框尺寸与棉花异纤大小不匹配导致棉花背景占比过高,从而引起正负样本不均衡的问题,采用K-means++算法对棉花异纤尺寸进行聚类分析,根据聚类结果修正候选框尺寸。通过算例进行验证,结果显示所提方法在实现模型轻量化的同时有效提升了异纤检测效果和计算效率。 展开更多
关键词 异纤检测 改进SSD 卷积神经网络 K-means++聚类 轻量化
在线阅读 下载PDF
基于拉曼光谱的变压器混合故障特征气体的改进卷积神经网络定量方法
3
作者 陈新岗 张文轩 +4 位作者 马志鹏 张知先 万福 敖怡 曾慧敏 《光谱学与光谱分析》 北大核心 2025年第4期932-940,共9页
激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低... 激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低信号维度,但也会造成其特征部分缺失或改变。针对上述问题,提出基于改进一维卷积神经网络与最小二乘支持向量回归相融合的拉曼光谱定量分析方法,即引入全局均值池化与最小二乘支持向量回归改进传统卷积神经网络,并运用Dropout方法提高模型泛化性能,防止过拟合。设计并搭建变压器故障特征气体拉曼光谱检测平台,采集7种故障特征气体及N_(2)、O_(2)混合气体的拉曼信号,在谱图2900 cm^(-1)频移附近,CH_(4)、C_(2)H_(6)气体呈现谱峰重叠,且变压器过热或局部放电故障发生时,会产生主要故障特征气体CH_(4),选择不同含量比例下的CH_(4)、C_(2)H_(6)混合气体作为研究对象具有代表性,按不同比例配制146组不同含量的CH_(4)、C_(2)H_(6)混合气体样本,检测时选用氮气作为标气,采集不同含量比例下混合气体样本的拉曼光谱数据,利用光谱数据增强方法,构建适用于深度神经网络的气体样本数据集。通过不断实验,优化网络结构参数与网络权重,完成模型训练并测试其预测效果,与多种定量模型进行对比分析,并研究光谱预处理对不同定量模型的影响,进而评估模型性能。结果表明,使用原始数据集建模时,改进卷积神经网络模型的预测精确度与回归拟合优度最佳,决定系数可达0.9998,均方根误差仅为0.0005 MPa;使用预处理后数据集建模时,改进卷积神经网络模型均方根误差为0.0023 MPa,相比使用原始数据集建模误差上升了0.0018,而传统方法误差均有所下降。该研究结果表明,所提方法与传统拉曼光谱定量方法相比,集成光谱预处理、特征提取和定量分析过程,在确保预测精确度的基础上,简化光谱分析流程,为快速、准确分析变压器混合故障特征气体提供了新的思路与参考。 展开更多
关键词 变压器 特征气体 拉曼光谱 改进一维卷积神经网络 定量分析
在线阅读 下载PDF
基于改进卷积神经网络的新能源并网短路电流预测技术
4
作者 于琳琳 蒋小亮 +2 位作者 贾鹏 孟高军 丁咚 《可再生能源》 北大核心 2025年第3期408-415,共8页
随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网... 随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网络进行改进,利用多尺度特征提取将电流故障数据特征最大化,引入注意力机制提取重要信息,卷积过程中使用跳跃连接的方式防止前向传递时信息丢失,有利于提高预测的准确性,构建基于改进卷积神经网络的短路电流预测模型;最后,经过PSCAD/EMTDC电网模型进行验证。结果表明,所提方法对短路电流峰值预测有着较高的精度,与常见的极限学习机、支持向量机相比,平均相对误差分别降低了0.61%,1.09%,验证了文章所提方法的有效性。 展开更多
关键词 新能源 改进卷积神经网络 短路电流预测 变分模态分解 注意力机制
在线阅读 下载PDF
基于改进卷积神经网络的激光雷达图像轮廓提取优化方法
5
作者 陈远祝 《激光杂志》 北大核心 2025年第9期88-93,共6页
由于激光雷达图像具有稀疏性、不规则形等特点,在设计激光雷达图像轮廓提取方法时,通常会出现因图像轮廓点确定不准确导致提取性能较差的问题。对此,提出基于改进卷积神经网络的激光雷达轮廓提取优化方法。利用高斯滤波算法,对激光雷达... 由于激光雷达图像具有稀疏性、不规则形等特点,在设计激光雷达图像轮廓提取方法时,通常会出现因图像轮廓点确定不准确导致提取性能较差的问题。对此,提出基于改进卷积神经网络的激光雷达轮廓提取优化方法。利用高斯滤波算法,对激光雷达图像进行滤波处理,再进行膨胀和腐蚀运算,对其进行形态学处理。在改进卷积神经网络的作用下,利用神经网络的向前传播函数,计算图像轮廓点的损失函数值,通过对确定的图像轮廓点进行拟合,利用轮廓点权重函数,对图像轮廓提取结果进行优化。实验结果表明:基于改进卷积神经网络的激光雷达图像轮廓提取优化方法在实际应用中提取性能较好。 展开更多
关键词 改进卷积神经网络 激光雷达图像 轮廓提取 提取优化 高斯滤波 形态学计算
在线阅读 下载PDF
基于卷积神经网络的水稻叶片病害检测与识别研究进展
6
作者 朱周华 周怡纳 王斌 《中国农机化学报》 北大核心 2025年第10期176-182,191,共8页
我国水稻叶片病害的防治工作一直以来都是重中之重。实现快速、准确的病害检测和分类识别,有助于在早期及时发现病害并采取治疗措施,从而提高水稻的产量和品质。通过分析现有水稻叶片病害检测与识别算法发现,基于传统图像处理方法的叶... 我国水稻叶片病害的防治工作一直以来都是重中之重。实现快速、准确的病害检测和分类识别,有助于在早期及时发现病害并采取治疗措施,从而提高水稻的产量和品质。通过分析现有水稻叶片病害检测与识别算法发现,基于传统图像处理方法的叶片病害检测效率低并且准确率不高,但随着深度学习不断发展,基于卷积神经网络的病害检测与识别已成为研究人员关注的重要课题。针对近年来使用的模型算法总结归纳数据预处理与数据增强、框架结构改进和迁移学习等改进策略,对比分析这些算法的性能及其局限性,发现多数模型存在准确率与模型参数量性能不平衡的问题。从数据集构建、模型性能平衡和泛化能力等方面展望未来的研究趋势,为以后高效检测与识别水稻叶片病害提供参考。 展开更多
关键词 水稻叶片 病害检测与识别 卷积神经网络 目标检测 分类识别 改进策略
在线阅读 下载PDF
基于多元气象信息和改进组合神经网络的分布式光伏短期功率预测模型
7
作者 吴伟丽 米婵 李磊 《太阳能学报》 北大核心 2025年第11期181-192,共12页
为提高光伏发电功率预测的准确性,提出一种考虑邻近电站气象信息的多元气象特征和改进组合神经网络的光伏功率短期预测模型。首先,考虑相邻分布光伏电站之间的地理因素和气候条件的相关性,利用灰色关联法确定待预测电站的主要影响因素,... 为提高光伏发电功率预测的准确性,提出一种考虑邻近电站气象信息的多元气象特征和改进组合神经网络的光伏功率短期预测模型。首先,考虑相邻分布光伏电站之间的地理因素和气候条件的相关性,利用灰色关联法确定待预测电站的主要影响因素,构成多元气象信息关键特征作为预测模型的输入序列。其次,结合时间卷积网络(TCN)对输入序列信息有效提取和双向门控循环单元(BiGRU)对数据双向学习的优势,搭建TCN-BiGRU组合预测模型,并采用改进后的灰狼优化算法(IGWO)对BiGRU进行超参数寻优,实现光伏发电功率的高精度预测。最后,利用实测数据对所提模型加以验证,并与同类方法进行对比。结果表明与多元气象信息结合,预测模型能够有效提高一年四季中不同类型天气的发电功率预测精度;与其他预测模型相比较,即使在气候条件剧烈变化或随机变化时,所提方法的预测结果也能呈现出良好的预测精度。 展开更多
关键词 光伏功率预测 神经网络 变分模态分解 双向门控循环单元 时间卷积网络 改进灰狼优化算法
在线阅读 下载PDF
基于知识蒸馏的卷积神经网络压缩方法 被引量:1
8
作者 郑筠 高朋 《沈阳工业大学学报》 北大核心 2025年第3期348-354,共7页
【目的】卷积神经网络作为深度学习领域的一项重要技术,在图像识别、目标检测、自然语言处理等多个领域展现出了卓越的性能。然而,随着模型深度和复杂度的增加,卷积神经网络模型的大小和计算需求也急剧上升,这为模型的部署和实时应用提... 【目的】卷积神经网络作为深度学习领域的一项重要技术,在图像识别、目标检测、自然语言处理等多个领域展现出了卓越的性能。然而,随着模型深度和复杂度的增加,卷积神经网络模型的大小和计算需求也急剧上升,这为模型的部署和实时应用提出了严峻挑战。【方法】为减少神经网络的大小和计算量,并提高模型的效率和可部署性,提出了基于知识蒸馏的卷积神经网络压缩方法。通过将大型复杂模型(教师网络模型)中的知识转移给小型精简模型(学生网络模型)来实现模型的压缩和加速,本文建立了性能优异的教师网络和结构更简单、参数更少的学生网络。教师网络负责提供丰富的特征表示和准确的预测结果,学生网络则通过学习教师网络行为来逼近其性能。使用标准损失函数,并通过反向传播算法迭代更新其参数,确保其在训练数据集上达到良好的性能。采用改进知识蒸馏方法获取综合阈值函数,评估教师网络和学生网络之间的知识差异,并指导学生网络的学习过程。在训练过程中,学生网络利用综合阈值函数进行监督,逐步逼近教师网络的输出,同时保持较小的模型结构和计算复杂度,从而实现了卷积神经网络的压缩处理。【结果】实验结果表明:本文方法在ImageNet和Labelme数据集上均表现出较好的模型压缩效果。其中,本文方法在压缩前后卷积神经网络输出结果的拟合度较高,表明学生网络成功学到了教师网络的关键特征;交叉熵损失值较低,在1.0左右,进一步验证了其良好的预测性能;完成卷积神经网络模型的压缩时间较短,为79.8~89.4 s,表明本文方法具有较高的计算效率。【结论】由以上结果可知,基于知识蒸馏卷积神经网络压缩方法能够有效减小模型结构、降低计算量,并保持甚至提升了模型的性能。本文方法不仅为模型压缩提供了一种新的思路,还为深度学习模型的部署和应用提供了有力支持。此外,本文方法在知识蒸馏方法上进行了改进,通过引入综合阈值函数来更全面地评估和指导模型的学习过程,在一定程度上提升了知识蒸馏的效果和效率。因此,本文方法不仅具有理论价值,还具有重要的实践意义。 展开更多
关键词 卷积神经网络压缩 改进知识蒸馏方法 判别器 学生网络 教师网络 标准损失函数 综合阈值函数 交叉熵损失值
在线阅读 下载PDF
基于卷积神经网络的入侵昆虫识别研究 被引量:2
9
作者 黄亦其 鹿林飞 +2 位作者 沈豪 王福宽 乔曦 《中国农机化学报》 北大核心 2024年第7期222-227,261,共7页
现有昆虫相关识别算法识别种类较少,缺少针对数量庞大种类众多的入侵昆虫分类识别算法,难以为入侵昆虫综合系统的识别功能提供稳定高效的技术支持。该研究对31类入侵昆虫图像进行数据采集,并对图像数据进行处理与数据集划分,基于四种卷... 现有昆虫相关识别算法识别种类较少,缺少针对数量庞大种类众多的入侵昆虫分类识别算法,难以为入侵昆虫综合系统的识别功能提供稳定高效的技术支持。该研究对31类入侵昆虫图像进行数据采集,并对图像数据进行处理与数据集划分,基于四种卷积神经网络模型DenseNet121、MobileNetV3、ResNet101和ShuffleNet对其进行训练测试分析讨论。结果表明,在入侵昆虫综合识别系统识别功能后台算法应用上,MobileNetV3表现出更好的综合性能。根据MobileNetV3模型现有缺陷和模型特性,对MobileNetV3模型指定瓶颈层的注意力机制和激活函数进行改进,改进后模型的准确率为92.8%,单张测试集图像的平均识别时间0.012 s,相较于原MobileNetV3模型分别提高0.5%、缩短15.2%,可以很好满足多昆虫识别分类需求。 展开更多
关键词 入侵昆虫 卷积神经网络 模型改进 图像识别
在线阅读 下载PDF
改进YOLOv2卷积神经网络的多类型合作目标检测 被引量:24
10
作者 王建林 付雪松 +3 位作者 黄展超 郭永奇 王汝童 赵利强 《光学精密工程》 EI CAS CSCD 北大核心 2020年第1期251-260,共10页
针对大型构件三维精密测量中构件结构复杂、测量环境变化等导致的合作目标检测精度低的问题,提出一种改进YOLOv2卷积神经网络的多类型合作目标检测方法。首先,利用WGAN-GP生成对抗网络扩增合作目标图像样本数量;其次,采用卷积层密集连... 针对大型构件三维精密测量中构件结构复杂、测量环境变化等导致的合作目标检测精度低的问题,提出一种改进YOLOv2卷积神经网络的多类型合作目标检测方法。首先,利用WGAN-GP生成对抗网络扩增合作目标图像样本数量;其次,采用卷积层密集连接代替YOLOv2基础网络的逐层连接增强图像特征信息流,引入空间金字塔池化汇聚图像局部区域特征,构建改进YOLOv2卷积神经网络的多类型合作目标检测方法;最后,采用增强的目标图像样本数据集训练改进YOLOv2卷积神经网络的多类型合作目标检测模型,实现多类型合作目标检测。实验结果表明:采用多类型合作目标图像数据集测试,多类型合作目标检测精度达到90.48%,目标检测速度为58.7 frame/s。该方法具有较高的检测精度和速度,鲁棒性好,满足大型构件三维精密测量中多类型合作目标检测的要求。 展开更多
关键词 合作目标 目标检测 数据增强 改进YOLOv2 卷积神经网络
在线阅读 下载PDF
基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型 被引量:43
11
作者 王根生 黄学坚 《小型微型计算机系统》 CSCD 北大核心 2019年第5期1120-1126,共7页
针对传统机器学习文本分类算法语义特征表达弱、文本表示维度高、词序丢失、矩阵稀疏等问题,提出基于Word2vec、改进型TF-IDF和卷积神经网络三者相结合的文本分类模型(CTMWT):首先通过Word2vec模型训练得出样本中所有的词向量;然后提出... 针对传统机器学习文本分类算法语义特征表达弱、文本表示维度高、词序丢失、矩阵稀疏等问题,提出基于Word2vec、改进型TF-IDF和卷积神经网络三者相结合的文本分类模型(CTMWT):首先通过Word2vec模型训练得出样本中所有的词向量;然后提出基于类频方差改进型TF-IDF算法,分析每个词向量在文本中的权重,构建基于词向量和权重的文本向量表示;最后借助卷积神经网络从局部到全局相关性特征的学习能力,对该大量文本向量进行深度学习.试验结果表明三者结合的文本分类模型不仅能实现文本的准确分类,并且相比传统的机器学习文本分类算法具有更好的分类效果. 展开更多
关键词 Word2vec 改进型TF-IDF算法 卷积神经网络 文本分类 CTMWT
在线阅读 下载PDF
稠密融合卷积神经网络的多模态地基云状分类 被引量:2
12
作者 刘爽 许依琳 张重 《电子测量技术》 北大核心 2021年第20期157-161,共5页
为了解决现有的地基云状分类方法对多模态信息利用不充分的问题,有效融合地基云样本的视觉特征与多模态特征,提出稠密融合卷积神经网络的多模态地基云状分类方法。稠密融合卷积神经网络采用卷积神经网络作为视觉子网络提取地基云图像的... 为了解决现有的地基云状分类方法对多模态信息利用不充分的问题,有效融合地基云样本的视觉特征与多模态特征,提出稠密融合卷积神经网络的多模态地基云状分类方法。稠密融合卷积神经网络采用卷积神经网络作为视觉子网络提取地基云图像的视觉特征,采用多模态子网络提取多模态特征,在网络内部加入了5个稠密融合模块,用于充分融合视觉特征与多模态特征,稠密融合模块在不改变原有网络结构的同时,能够独立地加到入子网络中,具有较大的灵活性。在多模态地基云公开数据集MGCD上的实验达到了89.14%的分类精度,验证了所提出的稠密融合卷积神经网络在地基云状分类任务中的有效性。 展开更多
关键词 卷积神经网络 多模态地基云状分类 稠密融合
在线阅读 下载PDF
改进卷积神经网络的舰船物联网安全风险估计 被引量:1
13
作者 彭芬 《舰船科学技术》 北大核心 2021年第14期205-207,共3页
现有方法在舰船物联网威胁识别率与缺陷识别率上表现不佳,因此提出一种改进卷积神经网络的舰船物联网安全风险估计方法。对舰船物联网安全风险数据进行分类也就是分类安全风险指标。对于动态类安全风险数据,需要对其进行数据补充。运行... 现有方法在舰船物联网威胁识别率与缺陷识别率上表现不佳,因此提出一种改进卷积神经网络的舰船物联网安全风险估计方法。对舰船物联网安全风险数据进行分类也就是分类安全风险指标。对于动态类安全风险数据,需要对其进行数据补充。运行类安全风险数据的预处理需要进行数据清理。基础类安全风险数据的预处理需要进行数据变换与数据归一化处理。基于改进卷积神经网络提取舰船物联网安全风险数据特征,使用的改进卷积神经网络为SSD神经网络。基于灰色层次分析、Borda序列、风险矩阵构建舰船物联网安全风险估计模型。对设计方法进行实践应用,测试其舰船物联网威胁识别率与缺陷识别率,结果表明该方法取得了识别率数据上的突破,能够保障舰船物联网的安全。 展开更多
关键词 改进卷积神经网络 回归分析 舰船物联网 数据变换 安全风险估计
在线阅读 下载PDF
基于改进卷积神经网络的复杂背景下玉米病害识别 被引量:44
14
作者 樊湘鹏 周建平 +1 位作者 许燕 彭炫 《农业机械学报》 EI CAS CSCD 北大核心 2021年第3期210-217,共8页
为解决田间环境复杂背景下病害识别困难、识别模型应用率低的问题,提出了一种基于改进卷积神经网络的玉米病害识别方法,探讨了数据集的品质对建立模型性能的影响。利用复杂背景下的玉米病害图像进行数据增强、背景去除、图像细分割和归... 为解决田间环境复杂背景下病害识别困难、识别模型应用率低的问题,提出了一种基于改进卷积神经网络的玉米病害识别方法,探讨了数据集的品质对建立模型性能的影响。利用复杂背景下的玉米病害图像进行数据增强、背景去除、图像细分割和归一化等处理,设计了具有5层卷积、4层池化和2个全连接层的卷积神经网络结构,利用L2正则化和Dropout策略优化网络,对复杂背景下的玉米9种病害进行识别训练和测试,优化后的CNN模型平均识别精度为97.10%,比未优化的网络模型提高9.02个百分点。利用不同大小、不同品质的数据集对优选网络进行训练和测试,数据增强后比原始样本平均识别精度提高了28.17个百分点;将复杂背景去除后,模型性能进一步提升,识别精度达到97.96%;对数据集进行细分割处理后,平均识别精度为99.12%,表明卷积神经网络需要大量的训练数据,且数据集需有一定的代表性和品质。开发了基于移动端的玉米田间病害识别系统,系统测试结果表明,平均识别准确率为83.33%,系统能够实现田间复杂环境下的玉米病害识别。 展开更多
关键词 玉米 病害识别 改进卷积神经网络 复杂背景 手机识别系统
在线阅读 下载PDF
滚动轴承多状态特征信息的改进型卷积神经网络故障诊断方法 被引量:20
15
作者 周陈林 董绍江 +4 位作者 李玲 汤宝平 贺坤 穆书锋 张潇汀 《振动工程学报》 EI CSCD 北大核心 2020年第4期854-860,共7页
针对现有滚动轴承故障诊断模型中人工选取特征的不确定性,诊断模型不具有针对性的难题,提出一种针对滚动轴承多状态特征信息的改进型卷积神经网络故障诊断方法。首先,该方法针对滚动轴承故障的多状态特征信息,提出一种改进型卷积神经网... 针对现有滚动轴承故障诊断模型中人工选取特征的不确定性,诊断模型不具有针对性的难题,提出一种针对滚动轴承多状态特征信息的改进型卷积神经网络故障诊断方法。首先,该方法针对滚动轴承故障的多状态特征信息,提出一种改进型卷积神经网络设计基本准则(BPDICNN);再次,利用提出的BPDICNN设计了卷积神经网络模型,直接在滚动轴承原始振动信号上进行“端到端”的学习训练,从原始信号中挖掘出包括故障类型、故障位置、故障损伤程度、故障检测时负载状态等多个特征;最后,利用实验数据进行了验证,实现了30个滚动轴承故障状态的有效诊断,准确率为100%,实验结果验证了方法的有效性。 展开更多
关键词 故障诊断 滚动轴承 改进卷积神经网络 多状态
在线阅读 下载PDF
基于改进卷积神经网络的在体青皮核桃检测方法 被引量:15
16
作者 樊湘鹏 许燕 +3 位作者 周建平 刘新德 汤嘉盛 魏禹同 《农业机械学报》 EI CAS CSCD 北大核心 2021年第9期149-155,114,共8页
采摘机器人对核桃采摘时,需准确检测到在体核桃目标。为实现自然环境下青皮核桃的精准识别,研究了基于改进卷积神经网络的青皮核桃检测方法。以预训练的VGG16网络结构作为模型的特征提取器,在Faster R-CNN的卷积层加入批归一化处理、利... 采摘机器人对核桃采摘时,需准确检测到在体核桃目标。为实现自然环境下青皮核桃的精准识别,研究了基于改进卷积神经网络的青皮核桃检测方法。以预训练的VGG16网络结构作为模型的特征提取器,在Faster R-CNN的卷积层加入批归一化处理、利用双线性插值法改进RPN结构和构建混合损失函数等方式改进模型的适应性,分别采用SGD和Adam优化算法训练模型,并与未改进的Faster R-CNN对比。以精度、召回率和F1值作为模型的准确性指标,单幅图像平均检测时间作为速度性能评价指标。结果表明,利用Adam优化器训练得到的模型更稳定,精度高达97.71%,召回率为94.58%,F1值为96.12%,单幅图像检测耗时为0.227 s。与未改进的Faster R-CNN模型相比,精度提高了5.04个百分点,召回率提高了4.65个百分点,F1值提升了4.84个百分点,单幅图像检测耗时降低了0.148 s。在园林环境下,所提方法的成功率可达91.25%,并且能保持一定的实时性。该方法在核桃识别检测中能够保持较高的精度、较快的速度和较强的鲁棒性,能够为机器人快速长时间在复杂环境下识别并采摘核桃提供技术支撑。 展开更多
关键词 青皮核桃 采摘机器人 目标检测 卷积神经网络 改进Faster R-CNN
在线阅读 下载PDF
基于改进的一维卷积神经网络的高分辨距离像识别方法 被引量:3
17
作者 陆金文 殷红成 +2 位作者 盛晶 袁莉 董纯柱 《电光与控制》 CSCD 北大核心 2020年第8期19-22,27,共5页
为了提高宽带雷达高分辨距离像目标识别性能,提出一种改进的一维卷积神经网络模型。考虑实际目标样本不足和信噪比低的问题,引入全局平均池化对整个网络模型做正则化,防止过拟合。针对真假目标形状和尺寸相似的情况,分析了该模型对不同... 为了提高宽带雷达高分辨距离像目标识别性能,提出一种改进的一维卷积神经网络模型。考虑实际目标样本不足和信噪比低的问题,引入全局平均池化对整个网络模型做正则化,防止过拟合。针对真假目标形状和尺寸相似的情况,分析了该模型对不同形状和尺寸目标的识别效果。实验结果表明,在训练样本数量较少和噪声干扰条件下,该模型可以有效地实现目标类型和尺寸识别。所提模型有助于解决实际真假目标形状和尺寸相似、样本不足以及信噪比低等情况下的雷达高分辨距离像自动目标识别问题。 展开更多
关键词 高分辨距离像 目标识别 改进的一维卷积神经网络 深度学习
在线阅读 下载PDF
基于改进SSD卷积神经网络的苹果定位与分级方法 被引量:31
18
作者 张立杰 周舒骅 +3 位作者 李娜 张延强 陈广毅 高笑 《农业机械学报》 EI CAS CSCD 北大核心 2023年第6期223-232,共10页
为实现苹果果径与果形快速准确自动化分级,提出了基于改进型SSD卷积神经网络的苹果定位与分级算法。深度图像与两通道图像融合提高苹果分级效率,即对从顶部获取的苹果RGB图像进行通道分离,并提取分离通道中影响苹果识别精度最大的两个... 为实现苹果果径与果形快速准确自动化分级,提出了基于改进型SSD卷积神经网络的苹果定位与分级算法。深度图像与两通道图像融合提高苹果分级效率,即对从顶部获取的苹果RGB图像进行通道分离,并提取分离通道中影响苹果识别精度最大的两个通道与基于ZED双目立体相机从苹果顶部获取的苹果部分深度图像进行融合,在融合图像中计算苹果的纵径相关信息,实现了基于顶部融合图像的多个苹果果形分级和信息输出;使用深度可分离卷积模块替换原SSD网络主干特征提取网络中部分标准卷积,实现了网络的轻量化。经过训练的算法在验证集下的识别召回率、精确率、mAP和F1值分别为93.68%、94.89%、98.37%和94.25%。通过对比分析了4种输入层识别精确率的差异,实验结果表明输入层的图像通道组合为DGB时对苹果的识别与分级mAP最高。在使用相同输入层的情况下,比较原SSD、Faster R-CNN与YOLO v5算法在不同果实数目下对苹果的实际识别定位与分级效果,并以mAP为评估值,实验结果表明改进型SSD在密集苹果的mAP与原SSD相当,比Faster R-CNN高1.33个百分点,比YOLO v5高14.23个百分点。并且在不同硬件条件下验证了该算法定位分级效率的优势,单幅图像在GPU下的检测时间为5.71 ms,在CPU下的检测时间为15.96 ms,检测视频的帧率达到175.17 f/s和62.64 f/s。该研究可为自动化分级设备在高速环境下精准定位并分级苹果提供理论基础。 展开更多
关键词 苹果分级 信息融合 改进型SSD 卷积神经网络 目标检测
在线阅读 下载PDF
基于改进卷积神经网络的数控铣床能效等级预测 被引量:2
19
作者 瞿华 张华 +1 位作者 鄢威 马峰 《机床与液压》 北大核心 2021年第8期1-7,14,共8页
针对数控铣床能效影响要素多、要素间关联关系复杂而导致的机床能效等级预测问题,提出一种基于卷积神经网络的数控铣床能效等级预测方法。通过数控机床运行过程能效影响要素分析,从设备、工艺、工件、刀具的维度对影响要素进行了分类;... 针对数控铣床能效影响要素多、要素间关联关系复杂而导致的机床能效等级预测问题,提出一种基于卷积神经网络的数控铣床能效等级预测方法。通过数控机床运行过程能效影响要素分析,从设备、工艺、工件、刀具的维度对影响要素进行了分类;依据不同维度数据的来源,提出数控铣床多维数据的采集与预处理方法;提出基于LeNet-5改进卷积神经网络的数控铣床能效等级预测方法。并通过案例验证了方法的可行性和适用性,最终的训练准确度达到97.29%,在测试集上的准确度达到93.32%,预测结果较好,可以指导设备以及可控参数的选择,有较好的应用前景。 展开更多
关键词 数控铣床 多维数据 改进卷积神经网络 能效等级预测
在线阅读 下载PDF
基于改进卷积神经网络的输电线路异常检测研究 被引量:7
20
作者 金波 陈铈 +2 位作者 赵青尧 夏凡 刘雯 《高电压技术》 EI CAS CSCD 北大核心 2023年第S01期68-71,共4页
常规的异常检测方法通过全局网络特征增强的形式获取异常检测特征,此过程中网络泛化能力较弱,导致检测模型的损失增加,影响最终的检测精准度。因此,设计了基于改进卷积神经网络的输电线路异常检测方法。提取输电线路异常特征,生成特征... 常规的异常检测方法通过全局网络特征增强的形式获取异常检测特征,此过程中网络泛化能力较弱,导致检测模型的损失增加,影响最终的检测精准度。因此,设计了基于改进卷积神经网络的输电线路异常检测方法。提取输电线路异常特征,生成特征图集并标记出线路异常位置。基于改进卷积神经网络构建线路异常检测模型,使输电线路的临界采样样本具有较低的冗余度,对输电线路进行导线直线检测。均衡输电线路异常检测的正负样本,增强网络泛化能力,从而降低检测模型的损失。采用对比实验的方式,验证了该方法的检测精准度更高,能够应用于实际生活中。 展开更多
关键词 改进卷积神经网络 输电线路 异常检测方法
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部