期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
基于改进YOLOv7的无人机图像小目标检测算法
1
作者 金涛 李昭蒂 《实验室研究与探索》 北大核心 2025年第7期118-124,143,共8页
针对无人机图像背景复杂、遮挡及尺度变化导致的小目标错检和漏检问题,提出基于YOLOv7算法的小目标检测改进模型。该模型通过引入坐标注意力机制(CA)优化特征提取,使用自适应激活函数(ACON)增强网络非线性表达能力;同时,采用NWD作为新... 针对无人机图像背景复杂、遮挡及尺度变化导致的小目标错检和漏检问题,提出基于YOLOv7算法的小目标检测改进模型。该模型通过引入坐标注意力机制(CA)优化特征提取,使用自适应激活函数(ACON)增强网络非线性表达能力;同时,采用NWD作为新度量改进损失函数,以更精确衡量边界框相似性。此外,使用轻量级上采样算子CARAFE扩大感受野并聚合上下文信息。在VisDrone2019和NWPU VHR-10数据集上的实验表明,改进算法与原算法相比,mAP0.5和mAP0.5∶0.95指标均有显著提升,且与其他主流算法相比,检测精度也有明显优势。该方法为复杂环境下无人机图像小目标检测的实际应用提供了技术支撑,有助于推动相关领域的技术进步。 展开更多
关键词 无人机图像 yolov7算法 小目标检测 注意力机制 激活函数
在线阅读 下载PDF
基于改进YOLOv7的MODF端口状态检测算法
2
作者 胡朝举 郭凤仪 《计算机工程》 北大核心 2025年第2期78-85,共8页
人工巡检的管理方式导致光纤总配线架(MODF)端口状态的信息准确率较低,无法区分占用端口与虚占端口。针对MODF资源管理中的端口状态识别问题,提出一种改进的YOLOv7目标检测模型。鉴于数据集采集困难且类别不均衡,采用多种数据增强方法... 人工巡检的管理方式导致光纤总配线架(MODF)端口状态的信息准确率较低,无法区分占用端口与虚占端口。针对MODF资源管理中的端口状态识别问题,提出一种改进的YOLOv7目标检测模型。鉴于数据集采集困难且类别不均衡,采用多种数据增强方法来扩充数据集;在骨干网络中使用共享权重的感受野扩大模块(RFEM),扩大端口目标的感受野,减少训练过程中的过拟合风险;提出F-EMA注意力模块,以提高对空间上下文信息的利用率,减少因端口接近或被遮挡而导致的漏检、误检等情况;使用NWD损失函数替代交并比(IoU)度量,减轻对小目标位置偏差的敏感性,提升密集小物体检测准确率。实验结果表明,改进模型的mAP@0.5值达到98.8%,相比原Yolov7模型提升了2百分点,mAP@0.5∶0.95值达到63.8%,提升了9.5百分点,提高了MODF端口资源利用率,满足智能巡检系统对于端口占用状态识别准确率的基本要求。 展开更多
关键词 深度学习 yolov7算法 光纤总配线架 损失函数 感受野扩大模块 注意力模块
在线阅读 下载PDF
基于改进YOLOv7-tiny的车辆目标检测算法
3
作者 赵海丽 许修常 潘宇航 《兵工学报》 北大核心 2025年第4期101-111,共11页
为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级... 为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级高效层聚合网络(Efficient Layer Aggregation Network-Tiny,ELAN-T)模块进行轻量化改进;通过削减分支,对特征融合网络的ELAN-T模块进行轻量化改进,降低网络的参数量和计算量,并对特征融合网络的结构进行重新构造;引入高效通道注意力机制和EIOU边界框损失函数提升算法的精度。在预处理后的UA-DETRAC数据集上实验,改进后的算法参数量相比于原始的YOLOv7-tiny算法降低了15.1%,计算量降低了5.3%,mAP@0.5提升了5.3个百分点。实验结果表明,改进后的算法不仅实现了轻量化,而且检测精度有所提升,适合部署在边缘终端设备上,完成对道路中车辆的检测任务。 展开更多
关键词 车辆检测 yolov7-tiny算法 深度强力残差卷积块 轻量级高效层聚合网络模块
在线阅读 下载PDF
改进YOLOv7算法的核反应堆压力容器表面划痕检测研究
4
作者 王亚州 李巍 +2 位作者 胡鹏成 叶志伟 孙琦 《核电子学与探测技术》 北大核心 2025年第4期584-590,共7页
核反应堆压力容器表面质量是保证设备安全的重要因素,必须进行定期表面检测。核反应堆压力容器表面缺陷图像的背景复杂,缺陷尺寸小,进行人工视觉检测时,存在效率低、视觉疲劳、容易漏检等现象。因此,提出了一种基于改进YOLOv7算法检测... 核反应堆压力容器表面质量是保证设备安全的重要因素,必须进行定期表面检测。核反应堆压力容器表面缺陷图像的背景复杂,缺陷尺寸小,进行人工视觉检测时,存在效率低、视觉疲劳、容易漏检等现象。因此,提出了一种基于改进YOLOv7算法检测核反应堆压力容器表面划痕缺陷的方法。针对微小划痕缺陷容易漏检的问题,在YOLOv7的特征融合网络中添加小目标检测头。为了减少计算量,用深度可分离卷积替换主干网络和特征融合网络中的卷积模块。为了加速模型收敛,将SIoU损失函数替换CIoU函数。减少了模型计算量和增加模型收敛速度,提高了改进YOLOv7算法在现场应用的实时性。实验结果表明,基于改进的YOLOv7算法缺陷检测mAP@0.5可以达到71.3%,比常规YOLOv7提高了11.1%,模型计算量减少了76.8%。改进YOLOv7算法对于金属表面细小划痕,具有较高置信度,能够有效地检测出小尺寸划痕缺陷。 展开更多
关键词 表面缺陷 yolov7算法 目标缺陷检测 深度可分离卷积
在线阅读 下载PDF
改进YOLOv7算法的排水管道缺陷检测与几何表征 被引量:4
5
作者 曾飞 李斌 +1 位作者 周健 樊江峰 《现代制造工程》 CSCD 北大核心 2024年第3期110-118,共9页
定期检查排水管道可以及时发现严重缺陷,对保证排水系统健康运行和城市环境安全具有重要意义。针对排水管道低照度和低分辨率检测困难现状,提出一种改进YOLOv7算法的排水管道缺陷检测与几何表征方法。首先,利用对比度受限自适应直方图... 定期检查排水管道可以及时发现严重缺陷,对保证排水系统健康运行和城市环境安全具有重要意义。针对排水管道低照度和低分辨率检测困难现状,提出一种改进YOLOv7算法的排水管道缺陷检测与几何表征方法。首先,利用对比度受限自适应直方图均衡化图像增强技术,改善图像的对比度和细节,以提高检测网络对排水管道缺陷的捕获能力;其次,基于设计的Drop-CA和MC模块改进YOLOv7算法,使网络获得浅层缺陷的语义信息并降低误检率,提高模型的分类和定位能力;最后,针对裂缝和断裂2种严重缺陷,设计了一种定量描述该缺陷的几何特征方法来评估缺陷的大小。实验结果表明,改进的网络模型最终平均精度达到93.3%,检测速度达到42.9 f/s。该方法有效提升排水管道缺陷检测和分类精度,且可以有效表征缺陷的几何特征。 展开更多
关键词 图像增强 缺陷检测 改进的yolov7算法 Drop-CA 几何特征
在线阅读 下载PDF
基于改进YOLOv7的航空发动机叶片表面缺陷检测
6
作者 武仁康 程志江 +2 位作者 吴动波 王辉 梁嘉伟 《现代电子技术》 北大核心 2025年第15期135-143,共9页
对于航空发动机叶片在生产加工过程中产生的各种缺陷,通常以人工目检的方式来进行检测。为避免因人为经验导致检测结果缺乏一致性,以及检测效率低的问题。文中提出一种基于改进YOLOv7的叶片检测方法,旨在精准高效地检测叶片表面的缺陷... 对于航空发动机叶片在生产加工过程中产生的各种缺陷,通常以人工目检的方式来进行检测。为避免因人为经验导致检测结果缺乏一致性,以及检测效率低的问题。文中提出一种基于改进YOLOv7的叶片检测方法,旨在精准高效地检测叶片表面的缺陷。针对生产加工过程中四类常见的典型缺陷,构建了航空发动机叶片表面缺陷数据集。在YOLOv7特征融合网络的ELAN-W中加入SKNet,使模型获得自适应感受野以增强网络特征提取的能力;在头部网络引入Dyhead提升模型的类别识别能力和检测性能;采用MPDIoU损失函数替代原始的CIoU损失函数以实现更加精确的边界框回归。所提方法在保证召回率的基础上提升了模型的检测性能,其中精度、召回率和mAP@0.5分别提升了5.3%、2.2%和3.7%,检测单张叶片的时间为4.93 s。为叶片的自动化检测提供了一种新方法。 展开更多
关键词 计算机视觉 缺陷检测 航空发动机叶片 改进yolov7 深度学习 MPDIoU损失函数
在线阅读 下载PDF
基于YOLOv8n的罂粟识别改进算法研究
7
作者 陈海涛 王辉 +2 位作者 邓涛 刘永粤 张琪 《西南大学学报(自然科学版)》 北大核心 2025年第6期201-212,共12页
针对罂粟检测任务模型存在的小目标识别、背景复杂、目标物体相对尺度变化等问题,提出了一种基于YOLOv8n的罂粟识别改进算法。该算法通过引入iRMB注意力机制以增强罂粟小目标检测能力,通过将upsample模块替换为CARAFE上采样算子以提升... 针对罂粟检测任务模型存在的小目标识别、背景复杂、目标物体相对尺度变化等问题,提出了一种基于YOLOv8n的罂粟识别改进算法。该算法通过引入iRMB注意力机制以增强罂粟小目标检测能力,通过将upsample模块替换为CARAFE上采样算子以提升罂粟在复杂背景中的识别率,通过将损失函数由CIoU替换为MPDIoU以应对罂粟遥感目标相对尺度变化问题。研究结果表明:基于YOLOv8n的罂粟识别改进算法可将传统YOLOv8n算法的mAP从83.1%提升至86.6%,其中罂粟果实识别的AP提升1.0个百分点,罂粟花蕊识别的AP提升6.1个百分点,实现了对罂粟识别综合性能的提升。 展开更多
关键词 罂粟识别 算法改进 yolov8n算法 注意力机制
在线阅读 下载PDF
基于改进YOLOv7的丘陵地区茶树叶部病虫害识别方法
8
作者 彭炜峰 罗江华 《农机化研究》 北大核心 2025年第12期45-52,共8页
为解决丘陵地区茶树叶部病虫害检测识别中存在的图像目标较小、漏检和误检严重、耗费人力、识别不准、效率不高等问题,提出了一种基于改进YOLOv7的丘陵地区茶树叶部病虫害识别方法。首先,引入AC-E-ELAN模块,促进模型获取丰富图像特征信... 为解决丘陵地区茶树叶部病虫害检测识别中存在的图像目标较小、漏检和误检严重、耗费人力、识别不准、效率不高等问题,提出了一种基于改进YOLOv7的丘陵地区茶树叶部病虫害识别方法。首先,引入AC-E-ELAN模块,促进模型获取丰富图像特征信息,提升模型的学习与推理能力;然后,添加DCNv2、CBAM模块,提升模型对微小特征的提取能力和抗干扰能力;最后,采用CARAFE上采样算子和WIoU损失函数,提高模型识别效率和效果。将改进YOLOv7模型与胶囊网络、残差密集网络、YOLOv7、YOLOv8等模型对茶树叶部常见4种病虫害的识别进行对比试验,结果表明:改进YOLOv7模型的各项评价指标均优于其他模型,具有较高的识别精度和能力。研究为提高茶树生产质量和产量提供了新思路和新方法,对推进农作物病虫害监测预警、统防统治和智慧农业发展具有借鉴和参考意义。 展开更多
关键词 茶树叶部 病虫害识别 改进yolov7 深度学习 丘陵地区
在线阅读 下载PDF
面向弱光交通场景的YOLOv7道路标志检测算法优化
9
作者 孙亭 杨洁 +1 位作者 李家璇 王耀宗 《计算机工程》 北大核心 2025年第3期342-351,共10页
针对交通标志检测算法在黑夜及弱光条件下存在检测精度不高、漏检等问题,提出一种改进YOLOv7的交通标志检测算法。构建用于弱光增强的高斯图像滤波器,抑制其背景噪声,对图像实现像素增强。在YOLOv7网络中,构建新的AC-ResBlock残差模块... 针对交通标志检测算法在黑夜及弱光条件下存在检测精度不高、漏检等问题,提出一种改进YOLOv7的交通标志检测算法。构建用于弱光增强的高斯图像滤波器,抑制其背景噪声,对图像实现像素增强。在YOLOv7网络中,构建新的AC-ResBlock残差模块来替代ELAN中的3×3卷积模块,以提高交通标志的特征提取能力和网络推理速度。引入SIoU损失函数提高模型的准确度,加速训练过程收敛。采用K-means++算法代替K-means重新标定锚框的尺寸,在扩展后的中国交通标志检测数据集CCTSDB上的实验结果表明,改进后的YOLOv7算法准确率达到95.7%,召回率达到94.8%,平均精度达到96.3%,优于YOLOv8、YOLOv5及其他主流检测算法,可以实现黑夜及弱光条件下的交通标志检测。对于复杂环境下的交通标志检测具有一定的研究意义。 展开更多
关键词 交通标志检测 yolov7算法 黑夜图像增强 自注意力机制 损失函数
在线阅读 下载PDF
改进YOLOv7复杂场景下的车牌检测方法
10
作者 梁秀满 张静涛 刘振东 《中国测试》 北大核心 2025年第6期49-55,共7页
目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进... 目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进行替换。此外,用全维动态卷积替换特征融合网络中的普通卷积,同时嵌入CA(coordinate attention)注意力模块,增强模型特征融合能力。在此基础上对原算法中损失函数进行替换,采用更加优秀的损失函数SIoU(SCYLLA intersection over union),提高检测效率。实验采用CCPD(Chinese city parking dataset)数据集,筛选出部分具有挑战性的复杂场景中的车牌图片。实验结果表明:改进后的YOLOv7算法检测速度有大幅提升,帧率从原有的81.9帧/s提升至120帧/s。同时准确率(m AP)达到95.1%,提升2.9百分点,权重模型大小为36.1 MB。可以做到对复杂场景下的车牌进行实时检测,满足轻量化要求,提升了检测速度和精度。 展开更多
关键词 车牌检测技术 yolov7算法 轻量化网络 注意力机制 损失函数
在线阅读 下载PDF
改进型YOLOv8算法在火灾探测中的应用
11
作者 邓力 周进 刘全义 《安全与环境学报》 北大核心 2025年第3期888-897,共10页
为了提高YOLOv8n算法在火灾探测方面的性能,给出了一种改进方法,通过集成上下文聚合架构Container和轻量级网络GhostNet来优化YOLOv8n网络结构。消融试验和对比试验的结果表明,所提方法能够有效改善YOLOv8n算法检测火灾的效果。该算法... 为了提高YOLOv8n算法在火灾探测方面的性能,给出了一种改进方法,通过集成上下文聚合架构Container和轻量级网络GhostNet来优化YOLOv8n网络结构。消融试验和对比试验的结果表明,所提方法能够有效改善YOLOv8n算法检测火灾的效果。该算法的平均精度达92.8%,探测速度达95.24帧/s,查准率达95%,具备更高的探测性能,可以为火灾探测器的研发提供参考。 展开更多
关键词 安全工程 改进yolov8算法 深度学习 火灾探测
在线阅读 下载PDF
基于改进YOLOv7的矿用输送带异物检测
12
作者 李利锋 刘鑫 蔡发 《工矿自动化》 北大核心 2025年第S1期32-34,共3页
针对目前矿用输送带异物检测方法无法平衡异物检测的精度与速度的问题,提出一种基于改进YOLOv7的矿用输送带异物检测方法。首先,通过暗通道先验算法提高煤矿输送带图像对比度,减少煤尘干扰;其次,通过在YOLOv7中引入注意力模块提升异物... 针对目前矿用输送带异物检测方法无法平衡异物检测的精度与速度的问题,提出一种基于改进YOLOv7的矿用输送带异物检测方法。首先,通过暗通道先验算法提高煤矿输送带图像对比度,减少煤尘干扰;其次,通过在YOLOv7中引入注意力模块提升异物显著度,进而提高检测精度;最后,在模型训练时使用迁移学习方法,加快模型训练速度。实验结果表明,所提方法较YOLOv7方法的mAP@0.5指标提高了2.4%。 展开更多
关键词 输送带异物检测 迁移学习 注意力机制 yolov7 导向滤波 暗通道先验算法
在线阅读 下载PDF
基于改进YOLOv7-tiny算法的多种类不均衡样本水稻害虫检测 被引量:3
13
作者 李鑫 南新元 《山东农业科学》 北大核心 2024年第6期133-142,共10页
为实现基于机器视觉的田间水稻害虫检测,本研究结合IP102农业害虫数据集及网络资源,建立了含有26类标签的不均衡样本水稻害虫数据集;改进YOLOv7-tiny单阶段目标检测算法,以部分卷积PConv作为主要卷积核,结合极化自注意力机制(Polarized ... 为实现基于机器视觉的田间水稻害虫检测,本研究结合IP102农业害虫数据集及网络资源,建立了含有26类标签的不均衡样本水稻害虫数据集;改进YOLOv7-tiny单阶段目标检测算法,以部分卷积PConv作为主要卷积核,结合极化自注意力机制(Polarized Self-Attention),将提取到的特征进行复杂双向多尺度特征融合,建立了适合多种类不均衡样本的水稻害虫检测模型。结果表明,在加入迁移学习和多尺度训练的条件下,改进后的YOLOv7-tiny检测算法在自建水稻害虫数据集的平均检测精度达到96.4%,单张图片的检测时间为8.8 ms,模型大小为9 055 kb,可实现对田间水稻害虫的快速准确识别,为水稻害虫的智能化检测和防治提供了技术支持。 展开更多
关键词 水稻害虫检测 改进yolov7-tiny算法 部分卷积 极化自注意力机制 特征融合 迁移学习
在线阅读 下载PDF
基于YOLOv7-tiny改进的交通标志小目标实时检测算法 被引量:1
14
作者 牟家宇 南新元 《科学技术与工程》 北大核心 2024年第30期13072-13079,共8页
在自然环境下精确实时地检测交通标志小目标对自动驾驶和智慧交通有着重要意义,然而现有算法难以平衡速度与精度的问题。基于YOLOv7-tiny算法,提出了一种改进YOLOv7-tiny的交通标志小目标实时检测算法,即YOLO-T算法。采用条件参数化卷积... 在自然环境下精确实时地检测交通标志小目标对自动驾驶和智慧交通有着重要意义,然而现有算法难以平衡速度与精度的问题。基于YOLOv7-tiny算法,提出了一种改进YOLOv7-tiny的交通标志小目标实时检测算法,即YOLO-T算法。采用条件参数化卷积(CondConv)结构,提升了骨干网络的特征提取能力。为增强对小目标的定位准确度并保证检测速度,设计了TinyFPN特征融合网络结构和ELAN-P网络聚合层。为了验证YOLO-T算法的有效性,在TT100K数据集上做了消融实验和对比实验。实验结果表明,在训练样本及训练设备参数相同的情况下,YOLO-T比YOLOv7-tiny算法的均值平均精度(mAP)提升了16.8%,并且单张图片的检测时间仅10.2 ms。可见,所提的YOLO-T算法能够平衡交通标志小目标的检测速度与精度。 展开更多
关键词 交通标志检测 小目标 YOLO-T算法 yolov7-tiny算法
在线阅读 下载PDF
改进YOLOv7的道路多目标检测算法 被引量:1
15
作者 张琦 张赛军 +1 位作者 周广生 谢豪 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第11期27-34,共8页
道路环境感知是自动驾驶任务中的重要组成部分,为解决道路环境感知中小目标检测困难、检测目标尺寸不一致以及检测目标的遮挡给检测任务带来的困难,提出一种深度学习增强方法以提高目标检测性能。设计了Bottleneck-ELAN(bottleneck-effi... 道路环境感知是自动驾驶任务中的重要组成部分,为解决道路环境感知中小目标检测困难、检测目标尺寸不一致以及检测目标的遮挡给检测任务带来的困难,提出一种深度学习增强方法以提高目标检测性能。设计了Bottleneck-ELAN(bottleneck-efficient layer aggregation networks)模块作为主干,加强了模型的特征提取能力。使用Gather-and-Distribute(GD)机制实现了特征图之间跨尺度的直接融合,解决了颈部网络的信息丢失问题。此外,采用Complete-IOU(CIOU)和Normalized Wasserstein Distance(NWD)相结合的损失函数组,解决了单一IOU损失函数对不同尺度物体位移敏感性不一致和平滑性差的问题。结果表明,改进后的模型在BDD100K数据集上的平均精度均值达到了43.4%,相较于原始的YOLOv7算法提高了3.1%,并且在小目标检测中精度提升更为明显,达到10%。 展开更多
关键词 计算机视觉 目标检测 深度学习 yolov7算法
在线阅读 下载PDF
面向带钢表面小目标缺陷检测的改进YOLOv7算法 被引量:6
16
作者 樊嵘 马小陆 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第3期303-308,316,共7页
带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可... 带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可重参数化卷积模块,以提升小目标特征的提取效率;采用改进的双向特征金字塔网络(bi-directional feature pyramid network,BiFPN)颈部网络替换原有的路径聚合网络(path aggregation network,PANet)颈部网络,实现对小目标缺陷特征的高效提纯;采用解耦检测头进行检测结果输出,使网络在训练时进一步收敛至更高精度。实验结果表明,改进后的YOLOv7算法在小目标带钢缺陷检测场景下检测精度领先YOLOv7算法4.3 AP50精度,领先YOLOv6算法5.0 AP50精度,领先YOLOX算法4.8 AP50精度,说明该算法可以较好地应用于小目标带钢缺陷检测。 展开更多
关键词 机器视觉 缺陷检测 yolov7算法 双向特征金字塔网络(BiFPN) 注意力机制
在线阅读 下载PDF
基于改进YOLOv7的湖面漂浮物目标检测算法 被引量:5
17
作者 徐宏伟 李然 张家旭 《现代电子技术》 北大核心 2024年第1期105-110,共6页
为提高湖面多种类和小体积的漂浮垃圾检测识别的准确度与推理检测速度,结合湖面垃圾漂浮物的图像特征,采用半结构化剪枝技术创建X-Toss剪枝框架,并基于YOLOv7目标检测模型,提出一种轻量化湖面漂浮物实时检测方法C-X-YOLOv7。X-Toss剪枝... 为提高湖面多种类和小体积的漂浮垃圾检测识别的准确度与推理检测速度,结合湖面垃圾漂浮物的图像特征,采用半结构化剪枝技术创建X-Toss剪枝框架,并基于YOLOv7目标检测模型,提出一种轻量化湖面漂浮物实时检测方法C-X-YOLOv7。X-Toss剪枝框架使用DFS算法生成父子卷积核计算图,利用特定的内核模式剪枝卷积核,降低迭代剪枝的计算成本。融合CA注意力机制对模型进行加权,减少模型过拟合现象,提高模型准确性和泛化能力。结果表明:对湖面垃圾检测识别,C-X-YOLOv7模型识别准确率为91.7%,召回率为91.2%,与YOLOv7模型对比分别提升2.6%、2.5%;推理加速度上,X-Toss剪枝框架在RTX 2080 Ti与NVIDIA Jetson TX2上分别实现YOLOv7的1.98×和2.17×的加速比,相较于PD、NMS、NS等剪枝框架,X-Toss的推理加速比和能耗均有提升。研究表明C-X-YOLOv7湖面漂浮物检测方法为湖面垃圾检测识别提供了一种新思路。 展开更多
关键词 目标检测 yolov7 剪枝技术 半结构化剪枝 DFS算法 注意力机制 推理加速比 湖面漂浮物
在线阅读 下载PDF
改进YOLOv7的城市小型无人机目标检测方法 被引量:2
18
作者 崔勇强 李嘉轩 +3 位作者 侯林果 梅涛 白迪 陈少平 《计算机工程与应用》 CSCD 北大核心 2024年第10期237-245,共9页
针对“低小动”无人机的反制技术已成为低空空域安全防御的重要手段,然而实时检测与准确识别是实施有效反制的前提条件与关键基础。针对城市低空环境下,目标检测算法对不同背景下小尺度无人机目标检测精度低,容易出现漏检误检且易受外... 针对“低小动”无人机的反制技术已成为低空空域安全防御的重要手段,然而实时检测与准确识别是实施有效反制的前提条件与关键基础。针对城市低空环境下,目标检测算法对不同背景下小尺度无人机目标检测精度低,容易出现漏检误检且易受外界因素干扰等问题,提出了一种基于改进YOLOv7的“低小动”无人机目标检测方法。首先采集大量不同环境、不同背景下的无人机样本构建数据集,并采用ViBe(visual background extractor)算法进行预处理;其次引入坐标注意力机制与SPDConv(space-to-depth convolution)模块改进和优化YOLOv7的网络结构;最后提出融合ViBe和改进YOLOv7的二级检测架构,将改进后的YOLOv7作为网络模型检测经ViBe处理后的图像。依据原图与处理图像的位置大小关系,将检测出的目标坐标映射回归至原图片,从而完成目标检测提取。实验结果表明,所提目标检测方法检测精度达96.5%,较原YOLOv7方法提高了15.8个百分点,显著提升了“低小动”目标的检测精度,能够满足低空无人机的实时精准检测的需求。 展开更多
关键词 ViBe算法 反无人机 yolov7 坐标注意力机制 小目标检测 SPDConv
在线阅读 下载PDF
一种基于改进YOLOv7的相机标定特征点检测方法 被引量:2
19
作者 陈松 闫国闯 +2 位作者 马方远 王西泉 田晓耕 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期151-160,共10页
在基于视觉方法的军事目标检测等技术中,相机的精确标定是进行目标高精度测量的前提,同时也是开展后续图像处理、目标跟踪、三维重建的基础。相机标定的关键在于准确的检测图像中的标定特征点。以当前使用范围较广的棋盘格标定法为对象... 在基于视觉方法的军事目标检测等技术中,相机的精确标定是进行目标高精度测量的前提,同时也是开展后续图像处理、目标跟踪、三维重建的基础。相机标定的关键在于准确的检测图像中的标定特征点。以当前使用范围较广的棋盘格标定法为对象,针对受干扰(模糊、重噪声、极端姿态和大镜头失真)的标定图像难以进行特征点提取的问题,提出一种融合改进YOLOv7-tiny深度学习网络和Harris角点检测的相机标定特征点检测算法。针对原始网络在相机标定特征区域检测中的各种问题,引入Gather-and-Distribute信息聚合分发机制替换YOLOv7-tiny的加强特征提取网络(FPN)部分,提高不同层之间特征融合的能力;在主干特征提取部分后加入Biformer注意力机制,提高对小尺寸特征点候选区域的捕捉能力;在Head部分使用改进Efficient Decoupled Head解耦头,在提高精度的同时维持了较低的计算开销。测试结果表明,改进后的YOLOv7-tiny网络对特征点候选区域检测的准确率有显著的提高,达到95.3%,证明了改进后网络的有效性和可行性。 展开更多
关键词 相机标定 深度学习 yolov7-tiny 信息聚合分发机制 注意力机制 HARRIS算法
在线阅读 下载PDF
基于改进YOLOv7的钢轨缺陷检测方法 被引量:1
20
作者 赵亚凤 宋文华 +1 位作者 刘晓璐 胡峻峰 《电子测量技术》 北大核心 2024年第20期177-185,共9页
针对铁路轨道缺陷检测精度低,漏检率高,实时性不足的问题,本文提出了一种基于YOLO-FCA的钢轨缺陷检测算法。首先,将YOLOv7的主干网络替换成FasterNet轻量网络,并加入CloAttention注意力模块,减少参数量和计算负载的同时提高缺陷检测的... 针对铁路轨道缺陷检测精度低,漏检率高,实时性不足的问题,本文提出了一种基于YOLO-FCA的钢轨缺陷检测算法。首先,将YOLOv7的主干网络替换成FasterNet轻量网络,并加入CloAttention注意力模块,减少参数量和计算负载的同时提高缺陷检测的精度。其次,提出MS-ASFF,获取高层语义信息和保留低层详细特征,增强模型检测的准确性和鲁棒性。最后,在不影响精度的情况下进行网络剪枝,使模型更加轻量化,极大地提升了模型的检测速度。在公共数据集上进行实验,结果表明,YOLO-FCA相比原始模型YOLOv7模型的mAP提高了4.1%,达到80.7%,同时检测速度提升了38.5%,达到212.5 FPS。实验结果表明,YOLO-FCA能够高效且准确地定位检测钢轨缺陷。 展开更多
关键词 yolov7算法 钢轨缺陷 自适应的空间特征融合 注意力机制 轻量化模型
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部