针对目前海洋能区划研究中存在的计算复杂、耗时长和成本高等问题,本研究基于改进的多准则决策(Multiple criteria decision making,MCDM)方法和人工神经网络(Artificial neural network,ANN),提出了一种风浪联合开发区划智能模型。为...针对目前海洋能区划研究中存在的计算复杂、耗时长和成本高等问题,本研究基于改进的多准则决策(Multiple criteria decision making,MCDM)方法和人工神经网络(Artificial neural network,ANN),提出了一种风浪联合开发区划智能模型。为降低专家的主观偏差,应用基于层级的模糊权重评估(Fuzzy level based weight assessment,FLBWA)法来计算各评价指标权重;继而结合改进的Borda-全乘比例多目标优化(Borda-multi-objective optimization on the basis of ratio analysis plus full multiplicative form,Borda-MULTIMOORA)法计算开发适宜性指数,从而能够更加准确、高效地得到评价结果;之后,基于灰狼优化算法的反向传播(Grey wolf optimizer with back propagation,GWO-BP)神经网络构建并训练智能模型,将适宜性分析转化为自动化、高效化和智能化的过程;最后,以山东省风浪联合开发区划为例验证该模型的可行性和合理性。根据实例验证,该模型可以实现风浪联合开发区划的智能化,为相关领域的研究和政府规划提供参考。展开更多
文摘针对目前海洋能区划研究中存在的计算复杂、耗时长和成本高等问题,本研究基于改进的多准则决策(Multiple criteria decision making,MCDM)方法和人工神经网络(Artificial neural network,ANN),提出了一种风浪联合开发区划智能模型。为降低专家的主观偏差,应用基于层级的模糊权重评估(Fuzzy level based weight assessment,FLBWA)法来计算各评价指标权重;继而结合改进的Borda-全乘比例多目标优化(Borda-multi-objective optimization on the basis of ratio analysis plus full multiplicative form,Borda-MULTIMOORA)法计算开发适宜性指数,从而能够更加准确、高效地得到评价结果;之后,基于灰狼优化算法的反向传播(Grey wolf optimizer with back propagation,GWO-BP)神经网络构建并训练智能模型,将适宜性分析转化为自动化、高效化和智能化的过程;最后,以山东省风浪联合开发区划为例验证该模型的可行性和合理性。根据实例验证,该模型可以实现风浪联合开发区划的智能化,为相关领域的研究和政府规划提供参考。