期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于DRNN-LSTM-IPSO的锅炉经济运行优化目标值
1
作者 钱虹 王海心 徐邦智 《科学技术与工程》 北大核心 2024年第7期2749-2758,共10页
锅炉作为火电厂的重要设备,提高其运行经济性直接影响电厂的生产效益,而锅炉运行参数优化目标值的合理确定是保障锅炉经济运行的关键。首先提出改进的高斯混合模型算法应用于工况划分,即通过划分数据的分散度作为依据并基于马氏距离来... 锅炉作为火电厂的重要设备,提高其运行经济性直接影响电厂的生产效益,而锅炉运行参数优化目标值的合理确定是保障锅炉经济运行的关键。首先提出改进的高斯混合模型算法应用于工况划分,即通过划分数据的分散度作为依据并基于马氏距离来构建评价准则函数,以确定聚类数;其次通过构建具备长短时记忆功能的深度循环神经网络(deep recurrent neural network with long-short term memory, DRNN-LSTM)建立各工况区间下的经济模型;最后在经济模型构建的基础上,针对传统粒子群算法容易陷入局部极值问题,通过对惯性权重和加速因子进行调整得到改进的粒子群算法(improved particle swarm optimization, IPSO),可更加精准地在不同工况下进行区间范围内寻优,确定运行参数的优化目标值。实验结果表明,采用本文方法确定的优化目标值对应供电煤耗优于历史最优运行值,说明了该方法在挖掘锅炉优化运行潜力上具有一定的优势,按此方案调整锅炉运行可有效降低能耗水平,以达到锅炉经济运行的目的。 展开更多
关键词 工况划分 改进的高斯混合模型 DRNN-LSTM IPSO 优化目标值
在线阅读 下载PDF
基于噪音受益的快速图像分割算法
2
作者 牛艺蓉 王士同 《计算机工程与应用》 CSCD 北大核心 2016年第21期195-201,217,共8页
图像分割是指将一幅图像分解为若干互不交迭的区域的集合。当用已有的改进高斯混合模型于图像分割时,如何加快其分割过程是一个有研究意义的课题。基于最新的噪音受益EM算法,通过人工加噪来加快已有的改进高斯混合模型的收敛速度,从而... 图像分割是指将一幅图像分解为若干互不交迭的区域的集合。当用已有的改进高斯混合模型于图像分割时,如何加快其分割过程是一个有研究意义的课题。基于最新的噪音受益EM算法,通过人工加噪来加快已有的改进高斯混合模型的收敛速度,从而达到加快图像分割的目的。当添加的噪声满足噪音受益EM定理时,加性噪声加快了EM算法收敛到局部最大值的平均收敛速度。改进的高斯混合模型是EM算法的特例,因此,噪音受益EM定理同样适用于改进的高斯混合模型。实验表明,提出的算法进行图像分割时,其收敛速度明显加快,时间复杂度明显变小。 展开更多
关键词 噪声受益 新型期望最大化算法(NEM)定理 图像分割 空间邻域关系 改进的高斯混合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部