期刊文献+
共找到393篇文章
< 1 2 20 >
每页显示 20 50 100
基于层次近邻传播聚类的用户低电压越限模式挖掘方法
1
作者 沈枢昊 钟庆 +3 位作者 许中 王钢 李海锋 汪隆君 《电力工程技术》 北大核心 2025年第1期30-38,共9页
开展用户低电压越限模式挖掘工作可以为用户低电压问题的治理提供指导。针对目前台区低电压用户电压复杂多变、低电压越限模式未知的问题,文中提出基于层次近邻传播(hierarchical affinity propagation, HAP)聚类的用户低电压越限模式... 开展用户低电压越限模式挖掘工作可以为用户低电压问题的治理提供指导。针对目前台区低电压用户电压复杂多变、低电压越限模式未知的问题,文中提出基于层次近邻传播(hierarchical affinity propagation, HAP)聚类的用户低电压越限模式挖掘方法。首先,通过HAP聚类算法对大规模低电压用户电压数据集进行聚类分析,获得若干聚类簇。然后,将不同的聚类簇视作不同的低电压越限模式,并从越限时长和越限电压幅值两方面定义低电压越限模式的4项基本特征指标,通过计算各聚类簇的基本特征指标,反映其所对应低电压越限模式的特征。最后,将该方法运用到某地区低电压用户的电压数据集中,有效挖掘出该地区低电压用户的4种低电压越限模式,从而根据不同低电压越限模式的特征,有针对性地开展低电压用户的监管、分析工作,并制定用户低电压问题治理的优先级。 展开更多
关键词 低电压用户 层次近邻传播(HAP) 低电压越限模式 越限时长 越限电压幅值 治理优先级
在线阅读 下载PDF
基于改进密度峰值聚类算法的典型负荷曲线提取
2
作者 彭晓璐 王涛 +3 位作者 卢泽钰 廉杰 赵斌 张谦 《南方电网技术》 北大核心 2025年第9期150-161,共12页
针对现有聚类算法在提取典型负荷曲线时存在的非凸簇识别能力不足和参数敏感性等问题,提出基于改进密度峰值聚类(density peak clustering,DPC)算法的典型负荷曲线提取方法。首先,提出基于局部密度和相对距离的自适应聚类中心选取方法,... 针对现有聚类算法在提取典型负荷曲线时存在的非凸簇识别能力不足和参数敏感性等问题,提出基于改进密度峰值聚类(density peak clustering,DPC)算法的典型负荷曲线提取方法。首先,提出基于局部密度和相对距离的自适应聚类中心选取方法,解决传统DPC算法人为选择聚类中心的主观不确定性问题;其次,定义聚类交叉密度和聚类边界密度两个新参数,提出初始聚类校正策略,有效解决非聚类中心点的分配连带错误问题。通过6个二维数据集、4个多维数据集和1个实际REFIT电气负载测量数据集的对比实验表明,所提改进DPC算法在准确率(ACC)、调整兰德指数(ARI)和Fowlkes-Mallows指数(FMI)3个评价指标上均优于传统DPC、K-means和DBSCAN算法,其中ACC、ARI和FMI平均提升25.40%、46.92%和21.83%。算例结果表明,所提改进DPC算法提取的典型负荷曲线更具代表性,可为电力系统灵活性资源优化调控提供更精准的数据支撑。 展开更多
关键词 负荷 改进DPC算法 交叉密度 边界密度
在线阅读 下载PDF
基于改进近邻传播算法的Web用户聚类 被引量:6
3
作者 冷亚军 梁昌勇 陆文星 《情报学报》 CSSCI 北大核心 2012年第9期993-997,共5页
随着Intemet和电子商务的迅猛发展,聚类技术在Web用户划分方面的作用越来越明显。Web用户聚类的难度在于有成千上万的用户需要聚类,而且每个用户的偏好向量是高维稀疏的。对于处理大规模的数据集。近邻传播算法是一种快速、有效的聚... 随着Intemet和电子商务的迅猛发展,聚类技术在Web用户划分方面的作用越来越明显。Web用户聚类的难度在于有成千上万的用户需要聚类,而且每个用户的偏好向量是高维稀疏的。对于处理大规模的数据集。近邻传播算法是一种快速、有效的聚类方法。但面对高维稀疏的数据,近邻传播算法往往不能得到很好的聚类结果,而且该方法不能产生指定类数的聚类。本文提出一种改进的近邻传播算法,使用该方法对Web用户进行聚类。根据灰关系等级和Jaccard系数定义用户相似度矩阵,对算法产生的初始聚类进行重新分配,获得指定类数的聚类。实验结果表明新算法是有效的,与原始近邻传播算法相比,新算法在个性化推荐的应用中具有更好的性能。 展开更多
关键词 WEB用户 稀疏性 近邻传播算法 相似度矩阵
在线阅读 下载PDF
一种改进近邻传播聚类的图像分割算法 被引量:19
4
作者 孙劲光 赵欣 《计算机工程与应用》 CSCD 北大核心 2017年第6期178-182,199,共6页
针对近邻传播(Affinity Propagation,AP)聚类算法存在运算复杂度高且未考虑数据点密度对聚类效果的影响的问题,提出一种改进的近邻传播聚类算法并应用于图像分割。首先,在度量数据点之间的相似性时,考虑到密度差异对数据点成为类代表点... 针对近邻传播(Affinity Propagation,AP)聚类算法存在运算复杂度高且未考虑数据点密度对聚类效果的影响的问题,提出一种改进的近邻传播聚类算法并应用于图像分割。首先,在度量数据点之间的相似性时,考虑到密度差异对数据点成为类代表点可能性的影响,利用密度聚类的思想设置偏向参数,同时引入数据点的空间邻近位置信息,充分利用图像信息,提高相似度矩阵构造的合理性,增强聚类的内聚性,并提高分割精度;其次,为降低计算相似度矩阵的复杂度,减小计算机内存开销,引入Nystr?m逼近策略求解相似度矩阵,提升了算法的效率。实验表明,改进后的算法与传统的近邻传播聚类算法相比获得了更好的图像分割效果。 展开更多
关键词 图像分割 近邻传播 偏向参数 空间邻近位置信息 相似度矩阵 Nystr.m逼近策略
在线阅读 下载PDF
基于改进近邻传播聚类的异构无线传感器网络分簇算法 被引量:2
5
作者 钟伟民 王月琴 +2 位作者 梁毅 祁荣宾 钱锋 《江南大学学报(自然科学版)》 CAS 2012年第4期423-427,共5页
在近邻传播聚类算法基础上提出了基于偏向参数p可变的分簇路由算法CPAP,该算法针对异构无线传感器网络的特殊背景,改变AP算法偏向参数p的常规设置方式,综合考虑能量、距离因素解决分簇问题;另外,分析了算法中K参数的影响,取得其近似最... 在近邻传播聚类算法基础上提出了基于偏向参数p可变的分簇路由算法CPAP,该算法针对异构无线传感器网络的特殊背景,改变AP算法偏向参数p的常规设置方式,综合考虑能量、距离因素解决分簇问题;另外,分析了算法中K参数的影响,取得其近似最优值。仿真结果表明:CPAP与PECBA相比,第一死亡节点出现时间推迟了28.5%,将更多的能量用于网络开始死亡之前,提高了网络的能量利用率。 展开更多
关键词 无线传感器网络 分簇路由算法 近邻传播
在线阅读 下载PDF
近邻传播聚类优化的角点检测改进算法
6
作者 刘文进 张蕾 孙劲光 《计算机工程与应用》 CSCD 北大核心 2016年第9期219-222,共4页
针对传统Harris角点检测算法和目前一些改进算法应用在图像拼接时,仍然可能存在只可在单一尺度上检测、角点位置不准确、伪检和对噪声敏感致使检测率不高等缺点,提出一种基于AP聚类角点提取优化的双边滤波(BF)角点检测改进算法。该算法... 针对传统Harris角点检测算法和目前一些改进算法应用在图像拼接时,仍然可能存在只可在单一尺度上检测、角点位置不准确、伪检和对噪声敏感致使检测率不高等缺点,提出一种基于AP聚类角点提取优化的双边滤波(BF)角点检测改进算法。该算法在对图像进行双边滤波和多尺度角点检测的基础上,采用一种新型的聚类算法——近邻传播聚类算法(AP聚类算法),对候选角点提取真实角点的效率进行优化,并对角点算子进行改进。实验是在VS2010+OpenCV平台实现的。结果表明提出的改进算法不仅提高了角点提取效率,而且更加精确地检测图像角点,具有更好的效果,更强的实用性。 展开更多
关键词 HARRIS算法 双边滤波 多尺度 角点检测 近邻传播算法
在线阅读 下载PDF
基于改进AP聚类和双重注意力机制的区域级新能源超短期出力预测方法 被引量:1
7
作者 苏华英 林晨 +3 位作者 张俨 王融融 程春田 张俊涛 《广东电力》 北大核心 2025年第3期8-17,共10页
为提高新能源超短期出力预测的准确性,充分考虑电源的时空互补特性和关键气象信息,提出基于改进近邻传播(affinity propagation,AP)聚类和双重注意力机制的区域级新能源超短期出力预测方法。首先,建立电站之间互补性的评价指标,并计算... 为提高新能源超短期出力预测的准确性,充分考虑电源的时空互补特性和关键气象信息,提出基于改进近邻传播(affinity propagation,AP)聚类和双重注意力机制的区域级新能源超短期出力预测方法。首先,建立电站之间互补性的评价指标,并计算统计区域电站的互补性矩阵,利用改进AP聚类算法对区域电站进行空间聚类;然后,引入时序和特征2个维度的注意力机制,捕捉汇聚区的关键气象特征;最后,以此为基础建立基于双向长短期记忆网络的新能源出力超短期预测模型。实际数据验证所提预测方法相比于区域整体预测及传统AP聚类预测具有更高的精度。同时,与传统相关系数方法对比表明,融合注意力机制的预测模型更能有效捕捉汇聚区的气象特征。 展开更多
关键词 新能源出力 超短期预测 近邻传播 双向长短期记忆 注意力机制
在线阅读 下载PDF
基于改进近邻传播聚类挖掘算法的竞争情报研究 被引量:3
8
作者 李广明 于健 张海涛 《南京理工大学学报》 CAS CSCD 北大核心 2022年第2期192-197,共6页
根据竞争情报分析需要,会产生不同竞争情报分析模型,这些分析模型的构造大多建立在竞争情报数据的聚类统计之上。提出采用改进的近邻传播(Affinity propagation,AP)聚类算法实现大规模竞争情报数据聚类统计。根据竞争情报数据样本建立... 根据竞争情报分析需要,会产生不同竞争情报分析模型,这些分析模型的构造大多建立在竞争情报数据的聚类统计之上。提出采用改进的近邻传播(Affinity propagation,AP)聚类算法实现大规模竞争情报数据聚类统计。根据竞争情报数据样本建立相似矩阵,初始化偏向参数;通过布谷鸟搜索优化偏向参数,将偏向参数作为布谷鸟巢进行训练,设置轮廓指标值作为布谷鸟算法适应度函数;通过鸟巢位置更新优化后的偏向参数进行AP聚类运算,不断更新AP算法的决策和潜力阵;最终获得稳定的聚类结果。试验证明,通过合理设置布谷鸟宿主发现概率、移动步长和AP算法阻尼因子等参数,能够获得较好的聚类效果。相比常用竞争情报聚类算法,所提改进AP聚类算法能够获得更高的轮廓指标值和最短的欧式距离性能,在竞争情报数据分析统计中的适用度高。 展开更多
关键词 竞争情报 近邻传播 智能算法 偏向参数 轮廓值
在线阅读 下载PDF
一种改进K-means聚类的近邻传播最大最小距离算法 被引量:24
9
作者 王美琪 李建 《计算机应用与软件》 北大核心 2021年第7期240-245,共6页
针对初始聚类中心不合理的选择会导致K-means算法的聚类结果局部最优,且降低聚类算法收敛速度的问题,提出一种基于近邻传播算法和最大最小距离算法联合计算初始聚类中心的算法(APMMD)。该算法通过近邻传播算法从整个样本集中获得Kap(Kap... 针对初始聚类中心不合理的选择会导致K-means算法的聚类结果局部最优,且降低聚类算法收敛速度的问题,提出一种基于近邻传播算法和最大最小距离算法联合计算初始聚类中心的算法(APMMD)。该算法通过近邻传播算法从整个样本集中获得Kap(Kap>k)个具有代表性的候选中心点,再利用最大最小距离算法从Kap个候选中心点中选择k个初始聚类中心。在多个UCI数据集上实验,结果表明APMMD算法获得初始聚类中心应用于K-means聚类,迭代次数明显降低,聚类结果稳定且具有较高准确率。 展开更多
关键词 初始中心 近邻传播算法 最大最小距离算法 APMMD算法 性能量度
在线阅读 下载PDF
AP聚类和特征划分融合的群结构模型及跟踪算法
10
作者 王昊 宋骊平 《兵器装备工程学报》 北大核心 2025年第2期228-235,共8页
针对群目标跟踪问题中发生群合并和分裂时,传统的演化网络模型通过将目标间的马氏距离与预设的阈值进行比较实现群组划分,导致其跟踪效果因依赖于阈值选择而在性能上受限的问题,提出了一种基于近邻传播聚类和特征划分融合的群结构模型,... 针对群目标跟踪问题中发生群合并和分裂时,传统的演化网络模型通过将目标间的马氏距离与预设的阈值进行比较实现群组划分,导致其跟踪效果因依赖于阈值选择而在性能上受限的问题,提出了一种基于近邻传播聚类和特征划分融合的群结构模型,以避免上述问题并提升跟踪精度。新的群结构模型创新性地利用近邻传播聚类算法,依据目标点之间的距离和速度特征,在2个维度上对目标点进行有效划分,通过邻接矩阵表示聚类结果,并对两个邻接矩阵进行融合,构造出目标点的群组划分结构。结合高斯混合概率假设密度滤波进行群目标跟踪仿真对比实验,结果表明新的群结构模型在群组划分方面更接近群目标的真实划分,相较于传统的演化网络模型,新模型在群目标数目的估计及跟踪效果上有明显提升。所提出的群结构模型跟踪性能更好,模块化程度高并且具有更高的全局适应能力,为群目标跟踪提供了新的解决思路。 展开更多
关键词 群目标跟踪 近邻传播 演化网络模型 概率假设密度滤波 邻接矩阵
在线阅读 下载PDF
基于MapReduce的分布式近邻传播聚类算法 被引量:53
11
作者 鲁伟明 杜晨阳 +2 位作者 魏宝刚 沈春辉 叶振超 《计算机研究与发展》 EI CSCD 北大核心 2012年第8期1762-1772,共11页
随着信息技术迅速发展,数据规模急剧增长,大规模数据处理非常具有挑战性.许多并行算法已被提出,如基于MapReduce的分布式K平均聚类算法、分布式谱聚类算法等.近邻传播(affinity propagation,AP)聚类能克服K平均聚类算法的局限性,但是处... 随着信息技术迅速发展,数据规模急剧增长,大规模数据处理非常具有挑战性.许多并行算法已被提出,如基于MapReduce的分布式K平均聚类算法、分布式谱聚类算法等.近邻传播(affinity propagation,AP)聚类能克服K平均聚类算法的局限性,但是处理海量数据性能不高.为有效实现海量数据聚类,提出基于MapReduce的分布式近邻传播聚类算法——DisAP.该算法先将数据点随机划分为规模相近的子集,并行地用AP聚类算法稀疏化各子集,然后融合各子集稀疏化后的数据再次进行AP聚类,由此产生的聚类代表作为所有数据点的聚类中心.在人工合成数据、人脸图像数据、IRIS数据以及大规模数据集上的实验表明:DisAP算法对数据规模有很好的适应性,在保持AP聚类效果的同时可有效缩减聚类时间. 展开更多
关键词 近邻传播 分布式计算 MAPREDUCE 数据划分 融合
在线阅读 下载PDF
一种基于自适应标记与区域间近邻传播聚类的分水岭图像分割算法 被引量:19
12
作者 蔡强 刘亚奇 +2 位作者 曹健 李海生 杜军平 《电子学报》 EI CAS CSCD 北大核心 2017年第8期1911-1918,共8页
分水岭算法是一种高效的图像分割算法,能够准确地对图像进行基于区域的分割,但是存在易过分割的问题.为此本文提出一种改进的分水岭算法:首先,对彩色图像进行频谱包络滤波并计算彩色梯度获得梯度图像,再采取一种自适应设定参数的H-minim... 分水岭算法是一种高效的图像分割算法,能够准确地对图像进行基于区域的分割,但是存在易过分割的问题.为此本文提出一种改进的分水岭算法:首先,对彩色图像进行频谱包络滤波并计算彩色梯度获得梯度图像,再采取一种自适应设定参数的H-minima技术,对梯度图像的极小值区域进行标记;然后,对已标记极小值区域的梯度图像进行分水岭分割;最后,计算分水岭分割所得各区域的颜色矩,作为该区域的颜色特征,并对这些区域进行近邻传播聚类获得分割结果.通过与近年来其它改进的分水岭算法和采用聚类的图像分割算法实验比较,本文所提算法能更加有效地抑制过分割,提高分割准确率,具有良好的自适应性和鲁棒性. 展开更多
关键词 分水岭算法 自适应标记 近邻传播 图像分割 过分割
在线阅读 下载PDF
基于密度与近邻传播的数据流聚类算法 被引量:28
13
作者 张建朋 陈福才 +1 位作者 李邵梅 刘力雄 《自动化学报》 EI CSCD 北大核心 2014年第2期277-288,共12页
针对现有算法聚类精度不高、处理离群点能力较差以及不能实时检测数据流变化的缺陷,提出一种基于密度与近邻传播融合的数据流聚类算法.该算法采用在线/离线两阶段处理框架,通过引入微簇衰减密度来精确反映数据流的演化信息,并采用在线... 针对现有算法聚类精度不高、处理离群点能力较差以及不能实时检测数据流变化的缺陷,提出一种基于密度与近邻传播融合的数据流聚类算法.该算法采用在线/离线两阶段处理框架,通过引入微簇衰减密度来精确反映数据流的演化信息,并采用在线动态维护和删减微簇机制,使算法模型更符合原始数据流的内在特性.同时,当模型中检测到新的类模式出现时,采用一种改进的加权近邻传播聚类(Weighted and hierarchical affinity propagation,WAP)算法对模型进行重建,因而能够实时检测到数据流的变化,并能给出任意时间的聚类结果.在真实数据集和人工数据集上的实验表明,该算法具有良好的适用性、有效性和可扩展性,能够取得较好的聚类效果. 展开更多
关键词 数据流挖掘 近邻传播 基于密度 变化检测
在线阅读 下载PDF
一种分层组合的半监督近邻传播聚类算法 被引量:15
14
作者 张震 汪斌强 +1 位作者 伊鹏 兰巨龙 《电子与信息学报》 EI CSCD 北大核心 2013年第3期645-651,共7页
针对近邻传播(AP)聚类算法的计算复杂度和准确性,该文提出一种分层组合的半监督近邻传播聚类算法(SAP-SC)。算法引入"分层聚类"的思想,将一次AP聚类过程等分成若干层聚类,使得处理过程简单、易于实现;每层只关注聚类"困... 针对近邻传播(AP)聚类算法的计算复杂度和准确性,该文提出一种分层组合的半监督近邻传播聚类算法(SAP-SC)。算法引入"分层聚类"的思想,将一次AP聚类过程等分成若干层聚类,使得处理过程简单、易于实现;每层只关注聚类"困难"的数据点,并通过构造"成对点约束"和使用"子簇标签映射"进行半监督学习;基于"组合提升"的方法将各层聚类结果加权叠加,从而提升了算法的准确性能。理论分析和实验结果表明:算法在聚类准确性和计算复杂度方面有了较大改进。 展开更多
关键词 半监督学习 近邻传播 分层 组合提升
在线阅读 下载PDF
面向大规模数据的分层近邻传播聚类算法 被引量:14
15
作者 刘晓楠 尹美娟 +2 位作者 李明涛 姚东 陈武平 《计算机科学》 CSCD 北大核心 2014年第3期185-188,192,共5页
近邻传播(Affinity Propagation,AP)聚类具有不需要设定聚类个数、快速准确的优点,但无法适应于大规模数据的应用需求。针对此问题,提出了分层近邻传播聚类算法。首先,将待聚类数据集划分为若干适合AP算法高效执行的子集,分别推举出各... 近邻传播(Affinity Propagation,AP)聚类具有不需要设定聚类个数、快速准确的优点,但无法适应于大规模数据的应用需求。针对此问题,提出了分层近邻传播聚类算法。首先,将待聚类数据集划分为若干适合AP算法高效执行的子集,分别推举出各个子集的聚类中心;然后对所有子集聚类中心再次执行AP聚类,推举出整个数据集的全局聚类中心;最后根据与这些全局聚类中心的相似度对聚类样本进行划分,从而实现对大规模数据的高效聚类。在真实和模拟数据集上的实验结果均表明,与AP聚类和自适应AP聚类相比,该方法在保证较好聚类效果的同时,极大地降低了聚类的时间消耗。 展开更多
关键词 数据 近邻传播 分层推举 中心
在线阅读 下载PDF
基于近邻传播算法的最佳聚类数确定方法比较研究 被引量:30
16
作者 周世兵 徐振源 唐旭清 《计算机科学》 CSCD 北大核心 2011年第2期225-228,共4页
在聚类分析中,决定聚类质量的关键是确定最佳聚类数。提出采用聚类效果较好的近邻传播聚类算法对样本进行聚类,运用6种聚类有效性指标分别对聚类结果进行有效性分析,以确定最佳聚类数。具体分析了这些有效性指标,并改进了IGP指标确定最... 在聚类分析中,决定聚类质量的关键是确定最佳聚类数。提出采用聚类效果较好的近邻传播聚类算法对样本进行聚类,运用6种聚类有效性指标分别对聚类结果进行有效性分析,以确定最佳聚类数。具体分析了这些有效性指标,并改进了IGP指标确定最佳聚类数的方法。针对8个数据集,通过实验比较这些指标的性能。分析和实验结果表明,基于近邻传播聚类算法,IGP指标确定最佳聚类数的性能最好。 展开更多
关键词 近邻传播 有效性指标 分析
在线阅读 下载PDF
基于近邻传播算法的半监督聚类 被引量:165
17
作者 肖宇 于剑 《软件学报》 EI CSCD 北大核心 2008年第11期2803-2813,共11页
提出了一种基于近邻传播(affinity propagation,简称AP)算法的半监督聚类方法.AP是在数据点的相似度矩阵的基础上进行聚类.对于规模很大的数据集,AP算法是一种快速、有效的聚类方法,这是其他传统的聚类算法所不能及的,比如:K中心聚类算... 提出了一种基于近邻传播(affinity propagation,简称AP)算法的半监督聚类方法.AP是在数据点的相似度矩阵的基础上进行聚类.对于规模很大的数据集,AP算法是一种快速、有效的聚类方法,这是其他传统的聚类算法所不能及的,比如:K中心聚类算法.但是,对于一些聚类结构比较复杂的数据集,AP算法往往不能得到很好的聚类结果.使用已知的标签数据或者成对点约束对数据形成的相似度矩阵进行调整,进而达到提高AP算法的聚类性能.实验结果表明,该方法不仅提高了AP对复杂数据的聚类结果,而且在约束对数量较多时,该方法要优于相关比对算法. 展开更多
关键词 半监督 近邻传播 相似度矩阵 成对点约束 先验知识
在线阅读 下载PDF
基于近邻传播与密度相融合的进化数据流聚类算法 被引量:34
18
作者 邢长征 刘剑 《计算机应用》 CSCD 北大核心 2015年第7期1927-1932,1949,共7页
针对目前数据流离群点不能很好地被处理、数据流聚类效率较低以及对数据流的动态变化不能实时检测等问题,提出一种基于近邻传播与密度相融合的进化数据流聚类算法(I-APDen Stream)。此算法使用传统的两阶段处理模型,即在线与离线聚类两... 针对目前数据流离群点不能很好地被处理、数据流聚类效率较低以及对数据流的动态变化不能实时检测等问题,提出一种基于近邻传播与密度相融合的进化数据流聚类算法(I-APDen Stream)。此算法使用传统的两阶段处理模型,即在线与离线聚类两部分。不仅引进了能够体现数据流动态变化的微簇衰减密度以及在线动态维护微簇的删减机制,而且在对模型采用扩展的加权近邻传播(WAP)聚类进行模型重建时,还引进了异常点检测删除机制。通过在两种类型数据集上的实验结果表明,所提算法的聚类准确率基本能保持在95%以上,其纯度对比实验等其他相关测试都有较好结果,能够高实效、高质量、高效率地处理数据流数据聚类。 展开更多
关键词 离群点 数据流 近邻传播 微簇
在线阅读 下载PDF
基于奇异值分解的自适应近邻传播聚类算法 被引量:5
19
作者 王丽敏 姬强 +1 位作者 韩旭明 黄娜 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第4期753-757,共5页
针对近邻传播算法无法有效处理高维数据而导致聚类效果不佳的问题,提出一种基于奇异值分解的自适应近邻传播(SVD-SAP)聚类算法.通过引入奇异值分解,对高维数据进行重构、降维,消除冗余信息,并在此基础上采用非线性函数策略,自适应地调... 针对近邻传播算法无法有效处理高维数据而导致聚类效果不佳的问题,提出一种基于奇异值分解的自适应近邻传播(SVD-SAP)聚类算法.通过引入奇异值分解,对高维数据进行重构、降维,消除冗余信息,并在此基础上采用非线性函数策略,自适应地调整阻尼系数,提高算法的聚类性能.仿真实验结果表明,与已有算法相比,该改进算法聚类精度更高,收敛速度更快. 展开更多
关键词 近邻传播算法 奇异值分解 非线性函数策略 阻尼系数
在线阅读 下载PDF
基于稀疏表示的近邻传播聚类算法 被引量:6
20
作者 胡晨晓 邹显春 +1 位作者 陈武 杨阳 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期220-224,共5页
借助稀疏表示具有能较好刻画样本之间相似度的特点,提出一种基于稀疏表示的近邻传播聚类算法.仿真实验表明,本聚类算法较基于其它距离度量的算法能获得更好的聚类效果.
关键词 稀疏表示 近邻传播 距离度量
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部