期刊文献+
共找到130篇文章
< 1 2 7 >
每页显示 20 50 100
基于脉冲序列标识的深度脉冲神经网络时空反向传播算法 被引量:2
1
作者 王子华 叶莹 +3 位作者 刘洪运 许燕 樊瑜波 王卫东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2596-2604,共9页
尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深... 尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深度脉冲神经网络训练的基于时间脉冲序列标识的监督学习算法,通过定义突触后电位和膜电位反传迭代因子分别分析脉冲神经元的空间和时间依赖关系,使用替代梯度的方法解决反传过程中不连续可微的问题。不同于现有基于尖峰放电速率标识的学习算法,该算法能够充分反映脉冲神经网络输出的时间脉冲序列的动态特性。因此,所提算法非常适合应用于需要较长时间序列标识的计算任务,例如行为的时间脉冲序列控制。该文在静态图像数据集CIFAR10和神经形态数据集NMNIST上验证了所提算法的有效性,在所有这些数据集上都显示出良好的性能,这有助于进一步研究基于时间脉冲序列应用的大脑启发计算。 展开更多
关键词 脉冲神经网络 监督学习 误差反向传播 时间脉冲序列标识 替代梯度
在线阅读 下载PDF
一种改进的反向传播神经网络算法 被引量:4
2
作者 邱浩 王道波 张焕春 《应用科学学报》 CAS CSCD 2004年第3期384-387,共4页
在标准反向传播神经网络算法的基础上,提出了一种改进的反向传播神经网络算法.通过对每个处理单元增加3个参数来增强作用函数,且3个参数与连接权一样,在学习过程中进行实时更新.此算法提高了学习速度,且减少了进入局部最小点的可能性.通... 在标准反向传播神经网络算法的基础上,提出了一种改进的反向传播神经网络算法.通过对每个处理单元增加3个参数来增强作用函数,且3个参数与连接权一样,在学习过程中进行实时更新.此算法提高了学习速度,且减少了进入局部最小点的可能性.通过XOR问题的仿真证明了改进算法的有效性. 展开更多
关键词 反向传播 神经网络 误差 模式 传播 学习算法
在线阅读 下载PDF
基于神经网络-高斯赫尔默特模型联合多点GNSS定位方法
3
作者 林海飞 彭友志 +1 位作者 夏玉国 何浩鹏 《大地测量与地球动力学》 北大核心 2025年第3期303-307,共5页
为降低复杂环境下GNSS定位误差,提出一种联合高精度测站和距离交会精确估计定位点坐标的方法。该方法首先将观测方程构建为非线性高斯-赫尔默特模型,针对其中的非线性问题,引入反向传播(back-propagation,BP)神经网络进行辅助处理。与... 为降低复杂环境下GNSS定位误差,提出一种联合高精度测站和距离交会精确估计定位点坐标的方法。该方法首先将观测方程构建为非线性高斯-赫尔默特模型,针对其中的非线性问题,引入反向传播(back-propagation,BP)神经网络进行辅助处理。与传统线性化方法相比,BP神经网络能够有效拟合复杂的非线性函数关系。仿真和实测结果表明,该方法能有效降低复杂环境对定位精度的影响,E、N、U方向定位精度分别提高78.1%、72.8%、79.2%。 展开更多
关键词 GNSS 复杂环境 高斯-赫尔模特模型 反向传播神经网络 误差估计
在线阅读 下载PDF
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型 被引量:8
4
作者 蒋华伟 郭陶 杨震 《科学技术与工程》 北大核心 2021年第21期8951-8956,共6页
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化... 在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。 展开更多
关键词 小麦储藏品质 多指标分析 粒子群算法 改进粒子群优化-反向传播神经网络(IPSO-BPNN) 预测模型
在线阅读 下载PDF
跨脉冲传播的深度脉冲神经网络训练方法
5
作者 曾建新 陈云华 +1 位作者 李炜奇 陈平华 《计算机应用研究》 CSCD 北大核心 2024年第7期2134-2140,共7页
基于反向传播的脉冲神经网络(SNNs)的训练方法仍面临着诸多问题与挑战,包括脉冲发放过程不可微分、脉冲神经元具有复杂的时空动力过程等。此外,SNNs反向传播训练方法往往没有考虑误差信号在相邻脉冲间的关系,大大降低了网络模型的准确... 基于反向传播的脉冲神经网络(SNNs)的训练方法仍面临着诸多问题与挑战,包括脉冲发放过程不可微分、脉冲神经元具有复杂的时空动力过程等。此外,SNNs反向传播训练方法往往没有考虑误差信号在相邻脉冲间的关系,大大降低了网络模型的准确性。为此,提出一种跨脉冲误差传播的深度脉冲神经网络训练方法(cross-spike error backpropagation,CSBP),将神经元的误差反向传播分成脉冲发放时间随突触后膜电位变化关系和相邻脉冲发放时刻点间的依赖关系两种依赖关系。其中,通过前者解决了脉冲不可微分的问题,通过后者明确了脉冲间的依赖关系,使得误差信号能跨脉冲传播,提升了生物合理性。此外,并对早期脉冲残差网络架构存在的模型表示能力不足问题进行研究,通过修改脉冲残余块的结构顺序,进一步提高了网络性能。实验结果表明,所提方法比基于脉冲时间的最优训练算法有着明显的提升,相同架构下,在CIFAR10数据集上提升2.98%,在DVS-CIFAR10数据集上提升2.26%。 展开更多
关键词 脉冲神经网络 脉冲时间依赖 误差反向传播 脉冲神经网络训练算法
在线阅读 下载PDF
基于人工神经网络的UWB坐标误差一步改正模型
6
作者 王一帆 李增科 +4 位作者 蒋诗政 陈远 黄林超 吉丽娅 邓伟昉 《测绘通报》 CSCD 北大核心 2024年第7期77-82,共6页
针对超宽带(UWB)定位存在的坐标误差难以利用常规手段进行改正的问题,本文提出了基于广义回归神经网络(GRNN)和反向传播神经网络(BPNN)的UWB坐标误差一步改正模型。改正模型以UWB原始定位坐标、与不同基站间距离为输入,以UWB相对高精度... 针对超宽带(UWB)定位存在的坐标误差难以利用常规手段进行改正的问题,本文提出了基于广义回归神经网络(GRNN)和反向传播神经网络(BPNN)的UWB坐标误差一步改正模型。改正模型以UWB原始定位坐标、与不同基站间距离为输入,以UWB相对高精度参考值误差为输出,分别以GNSS RTK点位坐标为动态试验参考值、全站仪点位坐标为静态试验参考值,对改正模型进行训练。将改正模型分别用于改正非建模样本点的UWB坐标,然后对改正前后的精度及不同改正模型的精度进行了比较分析。结果表明:利用人工神经网络直接建立UWB坐标一步改正模型的方法是可行的,该方法无须再次利用改正后的测距值解算坐标,更加简便、快捷;两种模型总体均能有效改善UWB的动态、静态定位坐标精度;且基于GRNN的改正模型相比基于BPNN的改正模型可以更有效地改善UWB坐标误差,改正后的UWB动态定位平面坐标精度可达厘米级,静态定位平面坐标精度高达毫米级。 展开更多
关键词 超宽带定位 坐标误差改正 广义回归神经网络 反向传播神经网络 一步改正
在线阅读 下载PDF
人工神经网络误差反向传播法测定复方苯甲酸涂剂中苯甲酸与水杨酸的含量
7
作者 朱鲁夫 程存归 王森清 《医药导报》 CAS 2005年第1期67-68,共2页
目的 对紫外光谱重叠的复方苯甲酸涂剂进行多组分不经分离的含量测定。方法 采用人工神经网络误差反向传播方法 (BP)对复方苯甲酸涂剂进行含量测定。结果 当网络隐蔽层的节点数为 5 ,以 9个节点输入时 ,苯甲酸与水杨酸的平均回收率... 目的 对紫外光谱重叠的复方苯甲酸涂剂进行多组分不经分离的含量测定。方法 采用人工神经网络误差反向传播方法 (BP)对复方苯甲酸涂剂进行含量测定。结果 当网络隐蔽层的节点数为 5 ,以 9个节点输入时 ,苯甲酸与水杨酸的平均回收率分别为 10 5 .0 %和 10 2 .0 % ,RSD分别为 1 5 %和 2 0 %。结论 该方法简便、快速 ,测定结果准确。 展开更多
关键词 人工神经网络误差反向传播 紫外光谱 苯甲酸涂剂 复方
在线阅读 下载PDF
基于反向传播神经网络的SVM技术在电压型变流器中的应用研究 被引量:13
8
作者 李建林 李玉玲 +1 位作者 李淳 张仲超 《中国电机工程学报》 EI CSCD 北大核心 2005年第6期71-74,共4页
在分析三相电压型变流器空间矢量调制(SVM)技术基本原理的基础上,提出了一种基于反向传播神经网络结构的 SVM 技术(CPN-SVM)的实现方法。该方法采用CPN 竞争层来计算 SVM 中各个矢量的具体作用时间,避免了计算正弦函数这一非线性运算,... 在分析三相电压型变流器空间矢量调制(SVM)技术基本原理的基础上,提出了一种基于反向传播神经网络结构的 SVM 技术(CPN-SVM)的实现方法。该方法采用CPN 竞争层来计算 SVM 中各个矢量的具体作用时间,避免了计算正弦函数这一非线性运算,缩短了计算时间,采样周期的可进一步缩短。仿真和实验表明:CPN-SVM 除了具备 SVM 的固有优点外,还有下述几个显著优点:①大大降低了整个控制系统的软硬件成本,提高了对开关瞬态位置判断的准确性;②随着采用周期的缩短,最大开关频率相应增大,从而提高了整个系统的传输带宽③避免了由于计算误差给 SVM 波形中所带来的附带谐波。 展开更多
关键词 SVM技术 反向传播神经网络 变流器 应用 空间矢量调制 神经网络结构 三相电压型 基本原理 作用时间 线性运算 正弦函数 计算时间 采样周期 控制系统 开关频率 计算误差 传输带宽 CPN 缩短 软硬件 准确性 仿真
在线阅读 下载PDF
一种采用2级反向传播神经网络的输电线路故障测距方法 被引量:15
9
作者 焦在滨 宋新尧 +1 位作者 李炳绪 吴润东 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第9期61-69,共9页
针对输电线路的故障测距中过渡电阻及电气量测量误差影响测距精度的问题,提出了一种采用2级反向传播(BP)神经网络的输电线路故障测距方法。通过分析双端电气量随过渡电阻的变化情况,确定了双端电气量变化规律的区域特性,提出了基于过渡... 针对输电线路的故障测距中过渡电阻及电气量测量误差影响测距精度的问题,提出了一种采用2级反向传播(BP)神经网络的输电线路故障测距方法。通过分析双端电气量随过渡电阻的变化情况,确定了双端电气量变化规律的区域特性,提出了基于过渡电阻分区后在不同区域分别进行精确定位的研究思路。利用第1级网络对双端电气量进行数据融合,将故障场景分为低阻故障和高阻故障,再利用第2级网络中的低阻故障测距网络和高阻故障测距网络分别对低阻故障和高阻故障的双端电气量进行数据融合,计算出精确的故障位置。对训练方法进行改进,在测量电气量中加入高斯白噪声信号来模拟含互感器误差的样本,将无误差样本和含误差样本组成的重复样本对作为训练样本,使训练后的BP神经网络对随机测量误差具备一定的适应能力。电磁暂态仿真结果表明:所提方法不受过渡电阻影响,在高阻故障情况下测距结果的最大误差仍然低于1%,且对随机误差具有较好的适应性,在输入电气量存在一定测量误差的情况下测距结果的最大误差低于2.5%,具有良好的应用前景。 展开更多
关键词 输电线路 故障测距 2级反向传播神经网络 过渡电阻 测量误差
在线阅读 下载PDF
基于贝叶斯神经网络的船用惯导定位修正方法 被引量:2
10
作者 周红进 宋辉 +2 位作者 范文良 王苏 谷东亮 《系统工程与电子技术》 EI CSCD 北大核心 2024年第4期1393-1400,共8页
船用惯性导航系统(inertial navigation system, INS)通常采用与全球卫星导航系统(global navigation satellite system, GNSS)组合导航的方式提高其长时间工作的定位精度。当GNSS失效时,其定位误差将随时间迅速发散。针对这一问题,设... 船用惯性导航系统(inertial navigation system, INS)通常采用与全球卫星导航系统(global navigation satellite system, GNSS)组合导航的方式提高其长时间工作的定位精度。当GNSS失效时,其定位误差将随时间迅速发散。针对这一问题,设计了采用反向传播神经网络(back propagate neural network, BPNN)、根据INS原始输出数据拟合修正经纬度的定位修正方案,提出了基于Bayesian算法更新网络权重系数的方法,结合理论分析和试验研究确定了神经元个数与训练数据集的分配方案。实船试验结果表明,当GNSS失效时,在后续2 h,通过24 h历史数据训练得到的神经网络修正INS位置,相比INS独立工作时的定位误差,修正后误差均值下降了63%,误差最大值下降约50%,最小值下降至0。 展开更多
关键词 惯性导航系统 全球卫星导航系统失效 反向传播神经网络 Bayesian算法 定位误差
在线阅读 下载PDF
基于IHHO-BP神经网络的模拟电路故障诊断 被引量:9
11
作者 王力 张露露 《电子测量与仪器学报》 CSCD 北大核心 2024年第5期238-248,共11页
针对模拟电路故障类型多、故障状态不稳定以及故障数据冗余,使得模拟电路故障诊断困难的问题,提出利用改进哈里斯鹰算法(improved Harris Hawks optimization, IHHO)优化反向传播(back propagation, BP)神经网络,实现模拟电路故障特征... 针对模拟电路故障类型多、故障状态不稳定以及故障数据冗余,使得模拟电路故障诊断困难的问题,提出利用改进哈里斯鹰算法(improved Harris Hawks optimization, IHHO)优化反向传播(back propagation, BP)神经网络,实现模拟电路故障特征选择与诊断。首先,将非线性自适应因子、柯西变异和随机差分扰动引入哈里斯鹰算法,实现收敛速度和精度的提升;其次,采用IHHO对模拟电路的单一故障和组合故障仿真数据进行特征选择,完成数据预处理;最后,采用IHHO-BP算法,对预处理后的故障数据进行训练和测试,实现模拟电路故障诊断。诊断结果表明,所提方法的诊断精度相较于其他算法提升了5.5%。 展开更多
关键词 模拟电路 特征选择 故障诊断 改进哈里斯鹰算法 反向传播神经网络
在线阅读 下载PDF
改进BP神经网络的功放有记忆行为模型 被引量:9
12
作者 陈庆霆 王成华 +2 位作者 朱德伟 龚琳 刘冰 《微波学报》 CSCD 北大核心 2012年第2期90-93,共4页
提出了一种基于改进误差反向传播神经网络(IBPNN)的具有记忆效应功率放大器(PA)的行为模型。该模型在传统误差反向传播神经网络(BPNN)的基础上利用Levenberg-Marquardt(LM)学习算法和加入动量因子的训练算法更新BPNN的权值和阈值,与传统... 提出了一种基于改进误差反向传播神经网络(IBPNN)的具有记忆效应功率放大器(PA)的行为模型。该模型在传统误差反向传播神经网络(BPNN)的基础上利用Levenberg-Marquardt(LM)学习算法和加入动量因子的训练算法更新BPNN的权值和阈值,与传统的BPNN相比只需要更少的训练次数就达到了更高的精度。20MHz带宽三载波WCDMA信号的时域和频域仿真都表明其具有良好的性能,并且由得到的功率放大器(PA)动态特性AM/AM和AM/PM可知,该模型可以很好地描述PA的记忆效应。最后,用16QAM调制的OFDM 20MHz带宽信号的实验证明了该模型具有普遍的适用性。 展开更多
关键词 功率放大器 记忆效应 行为模型 改进的误差反向传播神经网络
在线阅读 下载PDF
改进的萤火虫算法在神经网络中的应用 被引量:17
13
作者 张明 张树群 雷兆宜 《计算机工程与应用》 CSCD 北大核心 2017年第5期159-163,共5页
基本萤火虫算法存在容易陷入局部最优及收敛速度低的问题,提出了一种改进进化机制的萤火虫算法(IEMFA)。在群体进化过程中赋予萤火虫改进的位置移动策略,并利用改进后的萤火虫算法来优化传统BP神经网络的网络参数。测试结果表明,基于改... 基本萤火虫算法存在容易陷入局部最优及收敛速度低的问题,提出了一种改进进化机制的萤火虫算法(IEMFA)。在群体进化过程中赋予萤火虫改进的位置移动策略,并利用改进后的萤火虫算法来优化传统BP神经网络的网络参数。测试结果表明,基于改进萤火虫算法的BP神经网络具有更好的收敛速度和精度。 展开更多
关键词 进化机制 误差反向传播(BP)神经网络 萤火虫算法
在线阅读 下载PDF
神经网络在陀螺漂移误差模型辨识中的应用 被引量:3
14
作者 田蔚风 金志华 陆恺 《中国惯性技术学报》 EI CSCD 1998年第3期35-38,共4页
神经网络具有很强的自学习、自适应能力及非线性变换特性,为模型的辨识提供了一条十分有效的途径。本文基于反向传播(Back-Propagation)网络的研究,将神经网络应用于陀螺漂移误差模型辨识,通过陀螺的实际测试数据对神经网络的加权... 神经网络具有很强的自学习、自适应能力及非线性变换特性,为模型的辨识提供了一条十分有效的途径。本文基于反向传播(Back-Propagation)网络的研究,将神经网络应用于陀螺漂移误差模型辨识,通过陀螺的实际测试数据对神经网络的加权进行训练,得到了较为满意的结果。 展开更多
关键词 神经网络 反向传播 陀螺漂移误差模型
在线阅读 下载PDF
基于BP神经网络的上海生鲜农产品物流需求预测 被引量:18
15
作者 郝杨杨 邹宇 《上海海事大学学报》 北大核心 2024年第1期39-45,69,共8页
针对传统的生鲜农产品物流非线性需求预测模型收敛速度慢、精度低等问题,构建由改进粒子群(improved particle swarm optimization,IPSO)算法优化反向传播(back propagation,BP)神经网络的预测模型。引入对立学习机制、自适应惯性权重... 针对传统的生鲜农产品物流非线性需求预测模型收敛速度慢、精度低等问题,构建由改进粒子群(improved particle swarm optimization,IPSO)算法优化反向传播(back propagation,BP)神经网络的预测模型。引入对立学习机制、自适应惯性权重、非对称学习因子提升粒子群(particle swarm optimization,PSO)算法的初始解质量,平衡算法的局部开发和全局搜索能力;利用IPSO算法优化BP神经网络的权值和阈值,解决BP神经网络收敛速度慢、容易陷入局部最优等问题。通过上海生鲜农产品物流需求预测实例对模型的有效性进行验证,结果显示:IPSO-BP神经网络模型在预测精度及收敛速度上均明显优于传统PSO-BP神经网络和BP神经网络模型。 展开更多
关键词 冷链物流 需求预测 改进粒子群(IPSO)算法 反向传播(BP)神经网络
在线阅读 下载PDF
广义同余神经网络的算法改进与性能分析 被引量:4
16
作者 胡飞 靳蕃 《西南交通大学学报》 EI CSCD 北大核心 2001年第2期136-139,共4页
对广义同余神经网络 (GCNN)的性能进行了深入的分析研究 ,提出了一种改进的广义同余学习算法 ,并将该算法与当前广泛使用的标准BP网络算法进行了比较。计算机数字实例模拟表明 ,该算法具有学习速度快、拟合效果好等特点。
关键词 神经网络 同余式 BP网络 广义同余学习算法 误差反向传播算法 同系运算规则
在线阅读 下载PDF
人工神经网络在果蔬干燥领域应用进展 被引量:1
17
作者 樊宇航 宋卫东 +3 位作者 王教领 王明友 丁天航 周德欢 《中国农机化学报》 北大核心 2024年第8期112-119,147,共9页
果蔬干燥是农产品加工中的重要环节,构建精确的干燥动力学模型成为干燥领域的重点方向。综述人工神经网络在果蔬干燥过程中的应用现状、分析存在的问题和做出展望。针对神经网络在干燥过程中的各种场景分类为四个部分:含水率预测、品质... 果蔬干燥是农产品加工中的重要环节,构建精确的干燥动力学模型成为干燥领域的重点方向。综述人工神经网络在果蔬干燥过程中的应用现状、分析存在的问题和做出展望。针对神经网络在干燥过程中的各种场景分类为四个部分:含水率预测、品质检测、工艺优化和控制系统方面,总结各部分的应用类型及发展创新;再对比传统干燥模型和人工神经网络模型;最后介绍混合神经网络的应用场景。发现人工神经网络比传统干燥模型更精确,且混合神经网络结合专家系统、模糊逻辑等理论能够提供准确的预测,作为一种新颖高效的建模技术,可以广泛应用于果蔬加工的优化、控制、自动化等领域。其中应用最广泛的就是与遗传算法结合的GA-BP神经网络,BP负责预测、GA负责寻优,在这样的算法中不仅可以精确预测结果还可以优化工艺。这样的模型更适合果蔬干燥且在未来有更广阔的发展空间,以期这些探讨和分析对果蔬干燥领域具有参考意义。 展开更多
关键词 果蔬干燥 神经网络 干燥动力学模型 误差反向传播算法 含水率预测
在线阅读 下载PDF
ANN-CE:一种预测DNA结合位点的改进神经网络方法 被引量:1
18
作者 徐东 王翼飞 《应用科学学报》 CAS CSCD 北大核心 2005年第2期187-191,共5页
基于误差平方和最小原则的神经网络方法并不适于解决DNA结合位点的预测问题,提出了一种改进的神经网络方法(ANN CE)被用于对DNA结合位点进行预测.这是一个以交叉熵函数为目标函数的三层反向传播神经网络.计算结果表明,与基于误差平方和... 基于误差平方和最小原则的神经网络方法并不适于解决DNA结合位点的预测问题,提出了一种改进的神经网络方法(ANN CE)被用于对DNA结合位点进行预测.这是一个以交叉熵函数为目标函数的三层反向传播神经网络.计算结果表明,与基于误差平方和最小原则的同规模BP网络相比,其对DNA结合位点预测的敏感性Sn(sensitivity)和特异性Sp(specificity)可分别提高11.40%和11.91%. 展开更多
关键词 神经网络方法 结合位点 DNA 反向传播神经网络 误差平方和 最小原则 预测问题 计算结果 目标函数 BP网络 熵函数 特异性 敏感性 点预测
在线阅读 下载PDF
改进粒子BP神经网络在变电站噪声控制中的应用 被引量:6
19
作者 姜鸿羽 马宏忠 +2 位作者 梁欢 姜宁 李凯 《中国电力》 CSCD 北大核心 2014年第9期71-76,共6页
为了改善变电站噪声控制中已有自适应降噪滤波算法的自适应能力差、收敛速度慢等弊端,提出了一种新的基于粒子群优化(PSO)的误差反向传播神经网络(BPNN)智能滤波算法。该算法针对PSO算法易出现无法兼顾局部、全局搜索和群体多样性丢失... 为了改善变电站噪声控制中已有自适应降噪滤波算法的自适应能力差、收敛速度慢等弊端,提出了一种新的基于粒子群优化(PSO)的误差反向传播神经网络(BPNN)智能滤波算法。该算法针对PSO算法易出现无法兼顾局部、全局搜索和群体多样性丢失等问题,采用以粒子"亲密"度为依据来自适应调整粒子惯性因子和变异率的改进策略;利用该改进粒子群优化(IPSO)算法取代梯度下降算法,实时优化BPNN的权、阈值,使噪声迅速降低,再用梯度下降算法对BPNN的权、阈值作进一步的精细优化,使噪声得到更大程度上的抑制。文中以某变电站变压器噪声信号为仿真声源,分别利用所提算法、PSO-BPNN算法及BPNN算法对该声源信号进行主动抑制,结果表明所提算法性能明显优于另外2种算法的性能,使变压器降噪系统性能得到较大的改善。 展开更多
关键词 电力系统 变电站 噪声控制 误差反向传播神经网络 改进粒子群优化算法 粒子亲密度 惯性因子 自适应变异
在线阅读 下载PDF
基于热传导和卷积神经网络的磨床主轴热误差预测 被引量:6
20
作者 王培桐 范晋伟 +1 位作者 任行飞 李状 《光学精密工程》 EI CAS CSCD 北大核心 2023年第1期129-140,共12页
热变形是影响磨床加工精度的主要因素,严重制约了机床精度的进一步提高。为了提高热误差预测的精度,提出了一种基于热传导和卷积神经网络的磨床主轴热误差预测方法。根据热传导理论推导出主轴表面和外部环境的温差和热变量的映射关系,... 热变形是影响磨床加工精度的主要因素,严重制约了机床精度的进一步提高。为了提高热误差预测的精度,提出了一种基于热传导和卷积神经网络的磨床主轴热误差预测方法。根据热传导理论推导出主轴表面和外部环境的温差和热变量的映射关系,揭示了材料热变形本质。然后,建立了以温差为输入和主轴热变形量为输出的神经网络热误差预测模型。该模型拥有4个神经网络层,分别对应温差、热能增量、时间变量以及热变形量。运用反向传播算法对该预测模型进行训练并计算模型参数。最后,基于SINUMERIK 840D数控控制器开发了一套磨床主轴热误差补偿系统,并在某一数控磨床上进行了验证。结果表明,通过主轴热误差补偿后,磨床的加工精度提升了41.7%,验证了本文提出的主轴热误差预测模型的有效性和可行性。 展开更多
关键词 热传导 误差 反向传播算法 神经网络 磨床主轴
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部