期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于ICEEMDAN和分布熵的SS-Y伸缩仪信号随机噪声压制方法 被引量:3
1
作者 吴林斌 《大地测量与地球动力学》 CSCD 北大核心 2024年第4期429-435,共7页
结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量... 结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量的分布熵值,根据不同分布熵值的大小和表征的分量信号混乱程度,有针对性地对各IMF进行取舍;最后进行线性重构。设计仿真信号去噪实验和SS-Y伸缩仪信号去噪实验,结果表明,基于ICEEMDAN-DistEn去噪模型的伸缩仪信号重构还原度较好,去噪效果显著,明显优于CEEMDAN-DistEn、小波去噪和卡尔曼滤波等去噪模型。 展开更多
关键词 SS-Y伸缩仪 随机噪声压制 改进的自适应噪声完备经验模态分解 分布熵 信噪比
在线阅读 下载PDF
基于ICEEMDAN分解重构的BiLSTM-KELM短期电力负荷预测 被引量:3
2
作者 王晨 李又轩 +2 位作者 王淑侠 邬蓉蓉 吴其琦 《科学技术与工程》 北大核心 2024年第32期13836-13843,共8页
短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分... 短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和排列熵(permutation entropy,PE)重构部分,以及双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)与核极限学习(kernel extreme learning machine,KELM)预测部分。首先,使用ICEEMDAN将复杂的负荷数据分解成n个相对平稳的子序列,从而降低数据的随机性,并引入排列熵来计算每个子序列的PE值来进行重构,有效减小了模型的计算规模。其次,采用BiLSTM模型来挖掘数据之间的内在联系,对各个重构序列进行学习和预测。最后,利用KELM对重构序列的预测值进行非线性拟合,进一步提高预测精度。实验结果表明:ICEEMDAN-PE-BiLSTM-KELM模型比传统长短期记忆神经网络(long short-term memory,LSTM)模型的均方根误差(root mean square error,RMSE)降低了106.05 MW,平均绝对误差(mean absolute error,MAE)降低了62.34 MW,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了0.877%,可见该模型能够更好地解决数据的复杂性和随机性,同时提高预测精度。 展开更多
关键词 短期电力负荷预测 改进的自适应噪声完备经验模态分解(iceemdan) 排列熵(PE) 双向长短期记忆神经网络(BiLSTM) 核极限学习(KELM)
在线阅读 下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:4
3
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进的自适应噪声完备经验模态分解 样本熵 蜣螂优化算法
在线阅读 下载PDF
基于ICEEMDAN的微电网混合储能容量配置 被引量:2
4
作者 刘旭民 张彦 刘晓波 《南方电网技术》 北大核心 2025年第1期140-149,共10页
针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中... 针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中可再生能源出力和用电负荷波动导致的联络线功率波动问题。该方法通过对微电网中不平衡功率进行功率信号分解,并分析确定高频分量和低频分量,实现功率信号重构。针对不同储能系统技术特点,采用钠硫电池平抑低频分量,采用超级电容平抑高频分量。然后,通过建立以储能初始投资和维护成本最小为目标的HESS容量优化配置模型,利用商业求解器GUROBI求解混合储能配置方案。基于某并网型微电网进行算例分析,结果表明配置HESS能有效平抑微电网联络线功率波动,且该方法具有较好的经济性。算例分析结果验证了所提方法的有效性和可行性。 展开更多
关键词 改进自适应噪声完备经验模态分解(iceemdan) 微电网 混合储能 容量优化配置 GUROBI
在线阅读 下载PDF
基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取
5
作者 兀成龙 高翰林 +1 位作者 朱丹丹 李亚安 《振动与冲击》 EI CSCD 北大核心 2024年第13期190-197,216,共9页
当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出... 当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出了将改进排列熵与自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)相结合的空化噪声特征提取方法。首先,采用CEEMDAN方法对水下航行器螺旋桨的空化噪声进行分解,提取具有空化特征的固有模态函数(intrinsic mode function, IMF)分量;其次,选取相关系数最高的IMF分量并计算其多尺度改进排列熵(multi-scale improved permutation entropy, MIPE);最后,基于多尺度改进排列熵,建立支持向量机的特征分类模型。仿真和试验结果表明,该方法具有更好的可分性。 展开更多
关键词 多尺度改进排列熵(MIPE) 自适应噪声完备经验模态分解(CEEMDAN) 空化噪声 特征提取
在线阅读 下载PDF
基于ICEEMDAN-SST的定点形变信号去噪:以宜昌地震台为例
6
作者 冷崇标 张辉 +1 位作者 康波 霍玉龙 《科学技术与工程》 北大核心 2025年第25期10579-10585,共7页
定点形变仪器观测精度高,易受仪器工作状态以及外部环境变化影响而产生噪声,这些噪声的存在不利于地震信息的提取。为了消除定点形变信号中的噪声,提出了一种结合改进的自适应噪声完备集合经验模态分解(improved complete ensemble empi... 定点形变仪器观测精度高,易受仪器工作状态以及外部环境变化影响而产生噪声,这些噪声的存在不利于地震信息的提取。为了消除定点形变信号中的噪声,提出了一种结合改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和同步压缩变换(synchrosqueezing transform,SST)的去噪模型。该模型通过对含噪声的信号进行ICEEMDAN分解获得若干固有模态函数(intrinsic mode function,IMF)分量;然后计算各分量的样本熵(sample entropy,SE),并结合方差贡献率、相关系数,划分出有效分量、含噪声分量;最后,利用SST对含噪声分量进行去噪,并与有效分量重构,获得去噪后的纯净信号。通过仿真实验以及宜昌地震台不同类型实测信号分析表明,ICEEMDAN-SST模型能有效地区分含噪声分量、有效分量,去噪后的信号还原度较高,固体潮形态清晰,去噪效果优于S-G(Savitzky-Golay)滤波、卡尔曼滤波、小波去噪等传统方法,适用于多种定点形变仪器的不同类型噪声的压制。ICEEMDAN-SST模型的提出对于定点形变仪器地震信息的提取有着重要意义,有助于这类观测仪器在地震分析预报中发挥更大的作用。 展开更多
关键词 样本熵 改进的自适应噪声完备经验模态分解 同步压缩变换 定点形变 去噪
在线阅读 下载PDF
低信噪比下基于ICEEMDAN和HHO的协作频谱感知方法
7
作者 王全全 谢松霖 +2 位作者 顾志豪 吴城坤 张更新 《系统工程与电子技术》 北大核心 2025年第9期3109-3116,共8页
为解决频谱感知在低信噪比下性能受限的问题,提出了一种基于改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和哈里斯鹰优化(Harris hawks optimization... 为解决频谱感知在低信噪比下性能受限的问题,提出了一种基于改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和哈里斯鹰优化(Harris hawks optimization,HHO)的协作频谱感知方法。首先为获得固有模态函数(intrinsic mode function,IMF)分量,对次用户上传信号进行ICEEMDAN处理,其次计算已知波形的主用户(primary user,PU)信号与各IMF分量之间的相关系数,然后提取合适的IMF分量累加得到重构信号。接着用重构信号的平均能量值作为特征值训练支持向量机(support vector machine,SVM),并通过HHO优化SVM参数,最后用优化后的SVM模型对PU是否存在进行检测。实验结果表明,所提方法在低信噪比下检测概率、检测准确率均较高,感知性能较好。 展开更多
关键词 协作频谱感知 改进的自适应噪声完备经验模态分解 降噪 哈里斯鹰优化 支持向量机
在线阅读 下载PDF
基于参数优化的ICEEMDAN滚动轴承故障诊断
8
作者 李雨晴 马洁 《机床与液压》 北大核心 2025年第6期21-27,共7页
滚动轴承长期处于噪声污染的工作环境中,其故障诊断常受到噪声干扰,难以对故障特征信息进行有效提取。针对此问题,提出基于冠豪猪优化算法(CPO)的改进自适应噪声完备经验模式分解(ICEEMDAN)联合卷积神经网络(CNN)的故障诊断方法。通过CP... 滚动轴承长期处于噪声污染的工作环境中,其故障诊断常受到噪声干扰,难以对故障特征信息进行有效提取。针对此问题,提出基于冠豪猪优化算法(CPO)的改进自适应噪声完备经验模式分解(ICEEMDAN)联合卷积神经网络(CNN)的故障诊断方法。通过CPO对ICEEMDAN的白噪声幅值权重及噪声添加次数进行参数寻优,将最优参数返回并进行信号分解,以最小包络熵作为相关度函数,筛选出相关程度高的特征模态分量(IMF);将重构的有效特征分量IMF转化为特征向量并输入到CNN模型中,从而实现轴承的故障诊断。与已有模型进行对比,结果表明:该方法具有较强的泛化能力,诊断精度明显优于现有方法,并且具有更高的诊断效率。 展开更多
关键词 故障诊断 冠豪猪优化算法(CPO) 改进自适应噪声完备经验模式分解(iceemdan) 卷积神经网络(CNN)
在线阅读 下载PDF
基于多尺度分解的微地震噪声压制与初至检测方法研究 被引量:8
9
作者 唐杰 温雷 +1 位作者 李聪 戚瑞轩 《石油物探》 EI CSCD 北大核心 2019年第4期517-523,共7页
地面微地震数据信噪比很低,严重影响了初至拾取的精度及反演结果的可靠性。为此,对基于改进的完备总体经验模态分解(ICEEMD)的去噪方法与初至检测方法进行了研究,首先利用ICEEMD将非平稳信号分解为一系列相对平稳的固有模态函数,然后提... 地面微地震数据信噪比很低,严重影响了初至拾取的精度及反演结果的可靠性。为此,对基于改进的完备总体经验模态分解(ICEEMD)的去噪方法与初至检测方法进行了研究,首先利用ICEEMD将非平稳信号分解为一系列相对平稳的固有模态函数,然后提出了一种自适应间隔阈值去除固有模态中噪声成分的方法,最后将去噪后的分量相加重构去噪后的信号。应用Hilbert变换计算每个分量的振幅,然后计算持续能量比,利用给定的阈值找到局部最大值,计算得到高能量的地震信号的到达时间。理论模型数据及实际微地震资料的处理结果表明,去噪后数据的信噪比得到了改进,相对于传统的空间域滤波与变换域阈值去噪,该去噪方法具有显著的优势及较好的应用价值,与Hilbert变换结合的初至检测方法可以有效地检测微地震信号初至。 展开更多
关键词 微地震 随机噪声压制 改进的完备总体经验模态分解 固有模态函数 自适应间隔阈值 重构 初至检测
在线阅读 下载PDF
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型 被引量:1
10
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
在线阅读 下载PDF
基于校准窗口集成与耦合市场特征的可解释双层日前电价预测 被引量:7
11
作者 刘慧鑫 沈晓东 +3 位作者 魏泽涛 刘友波 刘俊勇 白元宝 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1272-1285,I0003,共15页
随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在... 随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在工程应用中可信度偏低。针对上述问题,该文提出一种考虑校准窗口集成与耦合市场特征的可解释双层日前电价预测框架。内层框架为基于改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)的择优预测,首先分解原始电价序列,然后应用Lasso估计回归(lassoestimated autoregressive,LEAR)、长期和短期时间序列网络(long-term and short-term time-series networks,LSTNet)、卷积神经网络-长短记忆神经网络(convolutionalneuralnetworks-longshort termmemory,CNN-LSTM)、移动平均(autoregressive integrated moving average,ARIMA)和核极限学习机(kernel extreme learning machines,KELM)模型预测子序列并选择最优预测算法。外层框架为基于贝叶斯模型平均(bayes modelaveraging,BMA)的校准窗口集成预测,针对每个不同校准窗口长度数据集下的预测分配权重并集成得到预测电价。最后,通过可解释方法沙普利加性解释模型(shapley additiveexplanations,SHAP)分析耦合市场特征如何影响预测电价。该文通过北欧电力市场数据集的算例分析证明了所提算法的优越性和校准窗口集成方案的有效性。 展开更多
关键词 校准窗口 耦合市场特征 双层预测框架 改进自适应噪声完备经验模态分解(iceemdan) 贝叶斯模型平均(BMA) 沙普利加性解释模型(SHAP)
在线阅读 下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究 被引量:6
12
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全经验模态分解(iceemdan) 多尺度排列熵 信号降噪
在线阅读 下载PDF
基于ICEEMDAN和共振解调的轴承故障检测方法 被引量:1
13
作者 唐斌 池茂儒 +2 位作者 赵明花 李大柱 许文天 《铁道机车车辆》 北大核心 2024年第4期84-91,共8页
对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度... 对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度图法确定共振频带,然后以此设计相应滤波器进行滤波;使用形态学滤波方法进行共振信号的解调,然后再利用FFT得到轴承的故障特征频谱图。内、外圈故障振动数据验证结果表明,该方法能够检测出滚动轴承的故障。 展开更多
关键词 滚动轴承 自适应噪声改进完全经验模态分解(iceemdan) 共振解调 快速峭度图 形态学滤波
在线阅读 下载PDF
基于ICEEMDAN和EMDE的滚动轴承故障诊断 被引量:1
14
作者 陈继祥 周想凌 +1 位作者 程振华 牟宪民 《中国工程机械学报》 北大核心 2024年第1期107-112,117,共7页
针对滚动轴承振动信号的非线性和非平稳特点,开发基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)和增强多尺度分布熵的故障识别模型。首先,利用ICEEMDAN分解滚动轴承振动信号,得到1组内禀模态函数(IMF),根据相关系数筛选出其中反映... 针对滚动轴承振动信号的非线性和非平稳特点,开发基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)和增强多尺度分布熵的故障识别模型。首先,利用ICEEMDAN分解滚动轴承振动信号,得到1组内禀模态函数(IMF),根据相关系数筛选出其中反映故障状态关键特征的IMF分量;然后,利用增强多尺度分布熵对各敏感IMF分量进行复杂性评估,得到滚动轴承的故障特征向量;最后,为识别滚动轴承的不同故障类型,使用支持向量机作为故障识别分类器。实验结果表明:所提故障诊断方法具有可观的故障识别精度和稳定性,相比于其他故障诊断方法,该方法具有明显的优势。 展开更多
关键词 自适应噪声完备经验模态分解(iceemdan) 增强多尺度分布熵 滚动轴承 故障诊断
在线阅读 下载PDF
基于改进深度残差收缩网络的电缆早期故障识别 被引量:1
15
作者 唐丹 吴浩 +1 位作者 蔡源 郑超文 《科学技术与工程》 北大核心 2024年第28期12159-12168,共10页
电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态... 电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态分解方法(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)进行故障信号处理,并利用相关系数筛选本征模态函数(intrinsic mode functions,IMF);然后对IMF分量求其复合多尺度排列熵作为进一步的特征提取,以构建特征数据集;最后利用改进的收缩模块,多尺度卷积层、Self-Attention和SimAM注意力机制对深度残差收缩网络进行改进。使用改进的深度残差收缩网络进行电缆早期故障识别实验。实验结果表明:该算法能准确识别出电缆早期故障,且具有一定的抗干扰能力。 展开更多
关键词 电缆早期故障 改进的完全自适应噪声经验模态分解方法(iceemdan) 复合多尺度排列熵 改进深度残差收缩网络 故障识别
在线阅读 下载PDF
基于ICEEMDAN和IMWPE-LDA-BOA-SVM的齿轮箱损伤识别模型 被引量:5
16
作者 王洪 张锐丽 吴凯 《机电工程》 CAS 北大核心 2023年第11期1709-1717,共9页
针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支... 针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支持向量机(SVM)的齿轮箱故障诊断方法(ICEEMDAN-IMWPE-LDA-BOA-SVM)。首先,采用ICEEMDAN对齿轮箱振动信号进行了分解,生成了一系列从低频到高频分布的本征模态函数分量;接着,基于相关系数筛选出包含主要故障信息的本征模态函数分量,进行了信号重构,降低了信号的噪声;随后,提出了改进多尺度加权排列熵的非线性动力学指标,并利用其提取了重构信号的故障特征,以构建反映齿轮箱故障特性的故障特征;然后,利用线性判别分析(LDA)对原始故障特征进行了压缩,以构建低维的故障特征向量;最后,采用蝴蝶优化算法(BOA)对支持向量机(SVM)的惩罚系数和核函数参数进行了优化,以构建参数最优的故障分类器,对齿轮箱的故障进行了识别;基于齿轮箱复合故障数据集对ICEEMDAN-IMWPE-BOA-SVM方法进行了实验和对比分析。研究结果表明:该方法能够较为准确地识别齿轮箱的不同故障类型,准确率达到了99.33%,诊断时间只需5.31 s,在多个方面都优于其他对比方法,在齿轮箱的故障诊断中更具有应用潜力。 展开更多
关键词 故障特征提取 信号分解及信号重构 特征降维 改进自适应噪声完备经验模态分解 改进多尺度加权排列熵 线性判别分析 蝴蝶优化算法 支持向量机
在线阅读 下载PDF
ICEEMDAN结合FastICA方法在转子系统降噪提纯中的应用 被引量:3
17
作者 胡超 毛宽民 +1 位作者 张东峰 周嘉诚 《现代制造工程》 CSCD 北大核心 2022年第1期113-118,103,共7页
针对转子系统采集得到的非平稳信号中存在着较多噪声,导致分解原信号易出现模态混叠和虚假模态现象,使得降噪提纯效果不理想,特征量无法识别等问题,提出了一种将改进自适应噪声的完备集合经验模态分解(Improved Complete Ensemble EMD w... 针对转子系统采集得到的非平稳信号中存在着较多噪声,导致分解原信号易出现模态混叠和虚假模态现象,使得降噪提纯效果不理想,特征量无法识别等问题,提出了一种将改进自适应噪声的完备集合经验模态分解(Improved Complete Ensemble EMD with Adaptive Noise,ICEEMDAN)和快速独立成分分析(Fast Independent Component Analysis,FastICA)相结合的转子系统振动信号降噪提纯方法。通过设计实验采集加速度信号进行分析对比后发现,该方法能够有效降低加速度信号中存在的噪声,实验结果中的平均绝对误差(MAE)和均方根误差(RMSE)均有所改善。同时通过设计转子系统轴心轨迹提纯实验,验证了该方法的实用性。 展开更多
关键词 改进自适应噪声完备经验模态分解 快速独立成分分析 加速度信号 降噪方法
在线阅读 下载PDF
应用ICEEMDAN和SVM的行星齿轮箱故障诊断 被引量:10
18
作者 王浩楠 崔宝珍 +1 位作者 彭智慧 任川 《机械科学与技术》 CSCD 北大核心 2023年第1期24-30,共7页
针对行星齿轮箱复合故障准确分类问题,应用了改进自适应噪声完备集合经验模态分解(ICEEMDAN)和支持向量机(SVM)相结合的故障诊断方法。首先,将行星齿轮箱的不同故障信号分别进行ICEEMDAN分解,得到各阶内禀模态函数(IMF);其次,利用各阶IM... 针对行星齿轮箱复合故障准确分类问题,应用了改进自适应噪声完备集合经验模态分解(ICEEMDAN)和支持向量机(SVM)相结合的故障诊断方法。首先,将行星齿轮箱的不同故障信号分别进行ICEEMDAN分解,得到各阶内禀模态函数(IMF);其次,利用各阶IMF分量与原信号的相关性大小,剔除虚假的IMF分量;最后,以优选IMF分量的多尺度模糊熵均值作为特征向量,输入到多分类SVM中进行故障分类,分类准确率高达100%,实验结果证明了该方法的可行性。 展开更多
关键词 改进自适应噪声完备经验模态分解 频域互相关 多尺度模糊熵 支持向量机 行星齿轮箱故障
在线阅读 下载PDF
基于ICEEMDAN及PFA-ELM的齿轮箱故障诊断研究 被引量:11
19
作者 刘凯 李磊 +3 位作者 王磊 陈庆辉 金奕扬 许家伟 《制造技术与机床》 北大核心 2023年第5期21-27,共7页
齿轮箱是工业设备中常用的传动部件。针对齿轮箱故障特征提取及诊断精度不足的问题,提出一种基于改进的自适应噪声完备集合经验模态分解(ICEEMDAN)及探路者算法(PFA)优化极限学习机(ELM)的故障诊断方法。首先,利用ICEEMDAN对信号进行分... 齿轮箱是工业设备中常用的传动部件。针对齿轮箱故障特征提取及诊断精度不足的问题,提出一种基于改进的自适应噪声完备集合经验模态分解(ICEEMDAN)及探路者算法(PFA)优化极限学习机(ELM)的故障诊断方法。首先,利用ICEEMDAN对信号进行分解,得到多个本征模态函数(IMF)。其次,基于斯皮尔曼相关系数,筛选出有效的IMF,并计算出每个有效IMF的模糊熵和排列熵作为故障特征向量。最后,利用PFA算法优化ELM中的权值和阈值,构建基于PFA-ELM的故障诊断模型。实验表明,PFA-ELM的故障诊断精度高达98.67%。该方法能够准确描述齿轮箱的工作状态,具有较高的实用价值。 展开更多
关键词 故障诊断 齿轮箱 改进的自适应噪声完备经验模态分解 探路者算法 极限学习机
在线阅读 下载PDF
基于ICEEMDAN的滚动轴承声信号故障诊断方法 被引量:6
20
作者 李篪 陈长征 《沈阳工业大学学报》 CAS 北大核心 2023年第6期672-679,共8页
针对基于单通道声信号的机械故障诊断信号干扰成分大,故障特征难以提取的问题,提出了一种结合改进自适应噪声完备经验模态分解(ICEEMDAN)和快速独立分量分析(FastICA)的方法。依据峭度与信号相关性准则设定本征内模分量(IMF)选取系数,对... 针对基于单通道声信号的机械故障诊断信号干扰成分大,故障特征难以提取的问题,提出了一种结合改进自适应噪声完备经验模态分解(ICEEMDAN)和快速独立分量分析(FastICA)的方法。依据峭度与信号相关性准则设定本征内模分量(IMF)选取系数,对ICEEMDAN自适应分解的IMF进行有效筛选,实现信号降噪和粗提取,并以所选IMF作为虚拟通道,应用FastICA成功实现信噪的盲源分离。通过内外圈故障轴承实验数据对算法实行对比验证,结果表明,所提算法大幅降低了噪声及干扰,有效提取了故障特征。 展开更多
关键词 机械故障诊断 声学诊断 声信号 滚动轴承 改进自适应噪声完备经验模态分解 快速独立分量分析 特征提取 盲源分离
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部